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Outline of Presentation

• A quick recipe for help choosing reasonable
magnet design parameters

• Alternate design options for muon collider
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A Guide to Choosing the Maximum Field
in Superconducting  Magnets
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Dipole Field

Quadrupole Gradient

Dipole: B=-muo Jo/2 *t
Quad: G=-muo jo/2 ln(1+t/a)
t  = coil thickness
a = coil radius

To get maximum field keep increasing coil thickness (within practical limit) till you reach the
maximum field in the coil where magnet quenches
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Quadrupole Gradient for various coil radius
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Dipole: B=-muo Jo/2 *t
Quad: G=-muo Jo/2 ln(1+t/a)
t  = coil thickness
a = coil radius

Jo=700 A/mm2 at the given field.
Need Jc ~ 2000 or more.
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Important number is pole-tip field  = Gradient * coil radius
In large aperture magnets, forces become large.
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Usable current Density in Magnet Design

Jsc(12T,4.3K) Jcu(A/mm2)
2500 1500

Cu/Sc Ratio B(T) Jc(A/mm2) J wire (A/mm 2 ) Joverall
6.30 5 9454 1295 911
5.18 6 7766 1257 885
4.29 7 6431 1216 856
3.56 8 5347 1171 825
2.96 9 4446 1122 790
2.46 10 3689 1066 751
2.03 11 3048 1005 708
1.67 12 2500 938 660
1.35 13 2031 863 607
1.09 14 1631 781 550
0.86 15 1289 693 488

Scaled from TWCA Insulated

y = -74.64x + 1824.1
R2 = 0.9956
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A Good "Linear Fit"

Critical Current Density in Superconductor: Jsc(at 4.3 K) 
Also Wire & Overall Current Densities Normalized for a Given Jcu
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A case study of Nb3Sn Superconductor
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Expected Performance of
HTS-based Magnets

Performance of 0.8 mm dia wire
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Nb3Sn (4.2K)

BSCCO2212 (4.2K)

NbTi (1.8K)

NbTi (4.2K)

(as of year 2000)

Expected performance of all Nb3Sn
or all HTS magnets at 4.2 K for the
same amount of superconductor:

All Nb3Sn All HTS
12 T 5 T
15 T 13 T
18 T 19 T*

*20 T for Hybrid

Year 2000 Data

All Nb3Sn All HTS
12 T 11 T
15 T 16 T
18 T 22 T

Near Future

Year 2000 data for Jc at 12 T, 4.2 K
Nb3Sn: 2200 A/mm2

BSCCO-2212: 2000 A/mm2

Near future assumptions for Jc at 12 T, 4.2 K
Nb3Sn: 3000 A/mm2  (DOE Goal)
BSCCO-2212: 4000 A/mm2 (2X from today)

Cu(Ag)/SC Ratio
BSCCO: 3:1 (all cases)
Nb3Sn: 1:1 or Jcu=1500 A/mm2
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Issues with HTS
Advantages:
• Can work at elevated temperature. For example, in muon collider and IR region
magnets where a large energy is deposited from the decay products.
• Has potential for producing very high magnetic fields.
Challenges:
• Large quantities are not available yet

But enough to make test coils and the length of wire available are increasing
continuously. Remember HTS is support by other program.

• Unknown field quality issues
We will be measuring them soon.

• High cost
Needs to come down by the time these magnets are needed. Also compare the
overall system cost. Consider special applications where cost matters less.

Status:
The performance has reached a level to consider them as a promising candidiate.
BNL has started magnet R&D with this challenging material. Results are encouraging.
Consider HTS option for magnets that are not required immediately.
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Measured Performance of HTS Cable
and Tape As A Function of Field at BNL

Measurement of an earlier “BSCCO-
2212 cable”  at BNL test facility.

Ic is better by over a factor of 2
now. This was a narrow (18 strand)
cable. Standard cable will carry
much more. Expect 5000 A up to a
high field.

HTS-I-00776-1
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Measurement of “BSCCO 2223 tape”
wound at 57 mm diameter with applied
field parallel (1µV/cm criterion)
(field perpendicular value is ~60%)

(self field correction is applied)

HTS Cable Test

HTS Tape Test
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Common Coil Magnets With HTS Cable

HTS cable coil prior to vacuum impregnation

A coil cassette made with HTS cable after
vacuum impregnation and instrumentation

Two coils were tested in Liquid Nitrogen

The HTS cables were from two different
batches. They behaved differently:

• Different Ic
• Different Tc

Based on preliminary analysis, no large
degradation has been observed.

10 Turn HTS Coils at 70 K
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Results of Coil #2 Tested in
Muon Collider and Common Coil Configuration

Muon Collider Configuration - Coil #2
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High Field Magnets for Muon Collider
and νννν Factory Storage Ring

Design Issues:

• Must use brittle superconductors 

   Nb3Sn, HTS 

• Large Lorentz forces

• Large energy deposition

• Cold coils, Warm iron

• Need compact cryostat

• Large heat leak

Conventional cosine θ design (e.g., RHIC magnets)
 Complex 3-d geometry -- not best for high fields

   Conductor friendly racetrack coil geometry 
Suitable for high field magnets with brittle material  
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Magnet Design for νννν Factory
Storage Ring Study II

The following design is for ν Factory but the principles are relevant to muon collider also

Simple racetrack coils with open midplane (does not require Tungsten liner)*

Decay products

µ beam

HTS is an interesting possibilities in such magnets.

*Earlier studies on open
midplane design by
  P. McIntyre and by
 M. Green
(with some variations)

Decay products clear
superconducting coils
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5 T Dipole for νννν Storage Ring

Warm Yoke

Coil

Beam Tube

Pole

Muon Beam

Ring Center

Decay Products

By

By= 0

By= +5 T

muon beam
(circulating)

Electrons deflected
back by reverse field

By= -1 T

In neutrino storage ring, is ~10%
energy deposition acceptable?

Design with a
reverse field

region in Iron

A dipole with no
cutout in yoke
for a reverse
field region.
Electrons will
hit yoke and
create shower

Iron yoke
starts here
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5 T central field can be achieved by NbTi
Decay electrons get back towards main aperture by

(a) Reverse field and (b) Magnet saggitta
which knob to use how much may depend on E & B

Iron yoke
starts here
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Lattice & Magnet Designs for a Compact Ring

• Skew quadrupole needs NO conductor at midplane (B. Parker)

• In study 1 (50 GeV), ~1/3 space was taken by inter-connect regions

 Gets worse at lower energy (50 => 20 GeV in study 2)

• New magnet system design makes a productive use of all space

D

Shorter cells      smaller aperture, improved beam dynamics

Interconnect
Region

Quadrupole(Q): 
  Field Gradient
Dipole(D): Field

No space is
wasted for
interconnectD

Q &
D/2 D

Q &
D/2 D

Q &
D/2
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Alternate End Design Concept
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Note: Errors get 
automatically cancelled

From normal coil

From reverse coil

b2 error thru the ends

straigth section

♠ Reverse coils to cancel field harmonics in ends (also generate skew quad)

Normal Coils
Dipole

Reverse Coils 
Skew Quad

One Coil
1/2 & 1/2

 New Magnet System Design
> Good field quality
> Makes ring small

 Important for BNL site

+ve-ve

Note: Bx & By (normal and skew harmonics) are cancelled but Bz (axial field) is not. 
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Magnet Construction Plan for Neutrino Factory
Storage Ring Dipole Model at BNL

We have got a limited funding
under LDRD. With that we are
building a series of short coils
(length same as in study 2).

The cross section in the magnet
under construction belongs to
an earlier design; but all design
principles remain the same.

The magnet will be made using
ITER cable and therefore would
reach a lower (~4 T) field.
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SUMMARY

Racetrack coil magnet designs with open midplane offers
an interesting possibility of making high field magnets
that can deal with large energy deposition.

HTS is a promising technology for muon collider magnets.


