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Abstract 

Several methods have been investigated to raise 
the transition energies of the TRIUMF KAON Factory 
accelerators, designed to provide 100 uA proton beams 
at 30 GeV, above their acceleration ranges. This would 
completely avoid beam loss at transition, which, even 
at the few percent level, would be unacceptable for 
these beam currents. The methods require a periodic 
perturbation in either the bending properties of the 
lattice or the focusing properties or both. In a com- 
bined-function lattice the perturbation is provided by 
clustering the magnets within each superperiod. The 
effects on the lattice functions are described. The 
long drifts resulting from the magnet distribution 
provide natural gaps for beam extraction and injection 
elements and for rf accelerating cavities. 

Introduction 

In present proton synchrotrons the process of 
crossing transition results in beam losses of typically 
a few percent, even when remedial measures, such as 
"transition jumps" are incorporated. For higher inten- 
sity synchrotrons, 
projectl, 

such as in the TRIIJMF KAON Factory 
in which 100 uA proton beams will be acceler- 

ated to 30 CeV, such losses are unacceptable because of 
the severe contamination they would cause. Lattices 
have therefore been investigated which raise transition 
energy yt above top energy, so that it never has to 
be crossed. In general this requtres a periodic per- 
turbation in either the bending properties of the 
lattice or the focusing properties or both. This paper 
discusses the criteria for high it and their 
application to both combined- and separated-function 
magnet lattices. 

An early example of a high-yt design was the 
Serpukhov proposal2 with reversed-curvature dipoles. A 
less extreme approach is to use missing magnet cells, 
as in Saturne 113, where there is a completely regular 
focusing structure. A different approach, vhich has 
been described by Teng4t5 and Ohnuma6, is to use 
pairs of trim-quadrupoles with opposite polarity in 
each superperiod. 
Hardt7. 

A related scheme has been used by 
For the TRIUMF application the 

combined-function lattices which have been considered 
for obtaining high yt are of the "modulated drift" 
variety, in which a superperiodicity is created by 
varying the drift lengths (and hence cell lengths) in a 
regular way, creating magnet clustering. These 
lattices are fully described below. Similar lattices 
have been adopted for the LAMPF IT. Booster*. The 
TRIUMF separated-function designs also achieve high 
it through dipole magnet clustering, but through the 
use of missing magnet cells in a completely regular 
FODO quadrupole lattice'. 

Theory 

The factors which are important in obtaining 
1att:ces with high transi.tion energy may be seen by 
examining expressions given by Courant and SnyderlO. 
The dispersion function (n,) satisfying the 
inhomogeneous Hill's equation may be written in terms 
of Fourier components of the lattice functions: 

*) Present address : Brookhaven National Laboratory. 
t) Present address : Eindhoven University of 

Technology, The Netherlands. 
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where v is the horizontal tune, 8 the horizontal beta- 
function, P the bending radius, $ = p/v the normalized 
phase advance, 
As a result 

u the phase advance, and n an integer. 
the momentum compaction factor is given by: 
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where R is the average radius and where the summation 
is from -= to +. In many synchrotron designs the 
dominant term is the one with n = 0, in which case CL = 

= l/v2 and y zterage value RjY; v (8 being replaced by its 
. If instead there is an additional 

major contribution from the harmonic n = S (and also 
from n = -S) then 

neglecting the contributions from other harmonics. The 
factor 2 takes care of the contributions from aS and 
a-S. 

The basic principle for changing the transition 
energy is thus to create a harmonic component aS by 
introducing a superperiodicity S. A small value of as 
will then give a large change in yt from the unper- 
turbed value yt = w, if S is close to v. This implies 
that the phase advance of each superperiod is close to 
2n. S should be just above v. If " < 
S and 

To increase yt, 
the harmonic is strong enough then the momentum 

compaction factor may even become negative, taking yt 
to an imaginary value. 

It may be seen from Eq. (1) that in order to 
generate an additional harmonic coefficient a 

7' 
one has 

to modulate either 5 (the focusing properties or L/P 

(the bending properties) or both. The natural,perio- 
dicity present due to the cell structure does not con- 
tribute significantly to yt since the tune of the 
machine is normally much less than the number of cells. 

Superperiodicity in the field gradients 

Courant and Snyder show that changes k(s) in the 
field gradient around the machine (path variable s) 
will gfve rise to a fractional change in B(s) given by 

m 

(4) 

where .I, is defined by an integral over the entire 
circumference C, 

J, = 1' 
0 

Be(s) k(s) eeine ds , (5) 

R,(s) being the unperturbed betafunction. If the 
changes have superperiodicity S, the major contribution 
to (4) will come from terms where n = qS with integer 
4. Equation (1) may now be used to obtain as, 
ex anding B in terms of B. and A6/8, and replacing 

?3 B. “/p by its average value: 

1’2 .J 
as 

S 
y&F' (6) 
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Since the change in cx depends on a$, this suggests that 
the harmonic S = 2u might be even more effective than 
s = u. From (4). however, we note that S = 2u would 
give rise to large and undesirable changes in B(s), 
With 5 = v it is possible to combine a large aS with 
a small AB/R, provided J2S is kept small - i.e. 
Bo(s)k(s) should have a sldnificant Sth harmonic, but 
a negligible 2Sth harmonic. 

A convenient measure to esttmate the increase in 
the peak values of lattice functions is obtained when 
the magnitude of the harmonic is ad justed to bring a to 
zero: 

as=LJy. 

Comparing this with (6) provides an expression for 
Js(S,v). Assuming that this is the only significant 
harmonic present (in particular .J2s = 0) one obtains: 

$2. z $ 1 _ s 1’2eis4 
I I ” 

confirming that modulations in 6 are small for v = S. 

Trim quadrupoles 

In this method a focusing and a defocusing 
quadrupole, about II in phase apart, are used in each 
superperiod to modulate the beta function. A detailed 
analysis has been given by Teng4p5 and Ohnuma6 and 
also by Rardt’ using a somewhat different approach. 
The method has also been used in the proposed lattice 
for s1s1*. Unequal excitation of the trim quadrupoles 
can be used to eliminate the J2S component when 
present. If the strengths of these two quadrupoles are 
k + bk and -k + bk then k contributes mainly to .lS and 
6k to J2S. The magnitude of 6k may then be used as a 
fitting variable to keep 8 almost unchanged at the 
point exactly in between the two quadrupoles. 

Missing magnet lattice 

A harmonic component aS is generated in a missing 
magnet lattice through the variation in l/p. we con- 
sider an example in which a superperiod has p cells, e 
of which are empty and p-e filled with dipole magnets, 
in order to obtain approximate expressions for yt and 
peak nx. For S superpertods with reflection symmetry 
in each : 

cos .Sc$ d+ = - sin’;e’u) 

which gives : 

1 
--T”-- 
Yt 

;2 [ 
1 + 2 sin2 yp1 ($J’ -& ] 

n,(4) = 
J- 

5 [l - 2 e* (+) & cos s+] . 
(9) 
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Figure 1 gives a comparison between values obtained by 
tracking with the DI?IATll code and those obtained using 
Eq. (9) for a tightly filled lattice with one out of 
four cells in each superperiod empty. It is seen that 
good numbers can be obtained without knowing detailed 
lattice properties. 

Modulated drift lattice 

In this section we describe a combined-function 
lattice in which variations in both 6 and l/p are 
created by modulating the drift spaces in each super- 
period, i.e. by clustering the magnets with more around 
the centre point of the superperiod than at the ends. 
This is done in such a way that the effects of both 
modulations enhance each other to yield a strong Sth 
harmonic component. In particular we describe a 30 GeV 
lattice with 48 cells, 12 superperiods and R = 131.6 m. 
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Fig. 1. Peak dispersion and Yt as a function of tune 
in a missing magnet lattice. 

For definiteness we consider the CERN ISR magnets. 
These are divided in two blocks each 2.5 m long, and 
have field indices of -229.4 and +218.7. Figure 2 
shows how the regular lattice is changed. A and B are 
points of reflection symmetry. 

In order to obtain a high harmonic coefficient 

izz?Ad A (or vice versa) 
both 83’2 and l/p should be high around R and low 

. Decreasing the length of 
drifts d increases the magnet density around R, making 
l/p higher there. It also increases B around B, pro- 
vided the symmetry points are defined in the middle of 
focusing magnets. Defocusing magnets at the symmetry 
points will change B3’* and l/p in opposite senses. 

The four drifts a, b, c and d have to be optimized 
in such a way that the betafunctions do not increase 
too much, due for instance to a 2Sth harmonic. Also 
tune changes are constrained by the requirement for 
high Yt. With fixed magnet parameters, as in the 
case studied, the magnet shifts satisfying these 
conditions are somewhat limited; with freedom to vary 
the field gradients, there is more flexibility. 

Possible combinations of the four drifts “a, b, c, 
d” are of the type LSLS, LLSS and LMMS, where S, M and 
L stand for short, medium and long drifts, M being 
taken equal to the drfft length of the regular lattice. 
The variation of yt, nx and vx with the difference 
between long and short drifts (a - d) in these patterns 
is shown in Fig. 3. The crucial factor here, because 
of the factor l/(u2-S2) in the expressions for y and 
nx, is the variation of vx with (a - d), especfa ly E 
where v is close to S. The decrease in u with increas- 
ing (a - d) in pattern LSLS becomes so large that 
despite an increasing IaS/, nx eventually decreases. 
However yt continues to increase because it depends on 
l/(v2-S’) multiplied by IagI. In Fig. 4 the peak 
values of 6x and 8 

Y 
are plotted against (a - d) for 

these patterns. 
For the 30 GeV ring structure LSLS is preferred 

because (a) It gives 2 long drifts in every half syper- 
period (24 in full machine) (b) it has the lowest Bx 
and ii,. The harmonic modulation in l/p for the struc- 
ture LSLS can be further augmented by increasing the 
first long drift a and decreasing another long drift c. 
The efEect of this variation on various parameters is 
shown in Fig. 5. The optimum lattice is shown in Fig. 

Fig. 2. Magnet rearrangement. 
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Fig. 3. Effect of increasing dieference between long 
and short drifts. 
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Fig. 4. Betafunction peak values versus long-short 
drift difference. 

6 and the lattice functions are plotted in Fig. 7. The 
drifts a, b, c, d are 5.63, 2.34, 4.64 and 1.55 m long. 

Conclusion 

Various methods for obtaining high transition 
energy magnet lattices have been described. 

The modulated drift lattice with combined-function 
magnets obtains an Sth harmonic dispersion from both 
the bending and the focusing distributions; it provides 
long drift spaces suitable for rf cavities and 
extraction and injection systems. 
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Fig. 5. Effect of increased difference in long drifts 
a and c with short drifts b and d fixed. 

Fig. 6. Layout of one superperiod. 
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Fig. 7. Lattice functions for optimized lattice. 
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