

Collider-Accelerator Department Magnet Division

www.bnl.gov/magnets

Abstract

BNL plans to build a partial helical snake for polarized proton acceleration in the □ It will be a 3 Tesla superconducting magnet having a magnetic length of 1.9 meter □ AGS needs only one magnet; no plans to build a prototype. The first magnet function at the design field and provide the required field quality, spin rotation, etc. □ New software is developed to exchanges input/output between the field d programs, CAD programs and programs that drives the machine to cut the metal.

* Work supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886 and by RIKEN of Japan.

Superconductor Parameters:	dipole as compared	to that in I
Filament diameter	10 micron straight dipole may	ection is of net.
Wire diameter	0.33 mm > In the straight m	agnet, the j
Cu to Non-Cu ratio	2.5:1 much larger than t	aat it is in t
Cable type	6-around-1 > The conventiona	of each bio
Cable diameter, bare	0.99 mm magnet is not valid	in the case
Cable diameter, insulated	1.09 mm become dependent	on integrat
Cable I _c @ 5T, 4.2 K	530 A Morgan end min angles of the curren	imize harn it blocks as
Coil Parameters:	> The actual beam	is injected
No. of coil layers	2 maximize the use of	available
Coil inner radius for inner layer	101.6 mm position and angle	xit the heli by which it
Coil inner radius for outer layer	127.8 mm > The beam experi	ences an as
Current blocks per quadrant	10 (5 per layer) away from the mag introducing an add	net axis. O
No. of turns in 9 blocks	12 X 9 = 108	arount sole
No. of turns in inner-pole block	12 X 5 = 60	
Other Parameters:	7.844 540	
Design field	3.0 T	11
Quench field	~4.1 T	all and
Operating current	~350 A	alle.
Quench current	~500 A	TRAC-
Operating temperature	4.5 K **	
Stored energy @3T	0.4 MJ	
Inductance	6.5 H	
Pitch in the middle (786 mm)	0.2053 deg/mm	
Pitch in the ends (577 mm each)	0.3920 deg/mm	82 82
Slot size, width/depth	13.6/13.1 mm	LARTIN
Warm bore tube id/od	152.4/156.5 mm Cross section of	f the straig
Cold bore shield id/od	165.2/167.7 mm identical block	size as in l
Cold bore tube id/od	176.5/181.6 mm region) are sup	agnitude o erimnosed
Inner Aluminum tube id/od	195.6/229.6 mm 5.50	Joint
Outer Aluminum tube id/od	248/281.8 mm	
Iron yoke id/od	300.4/685.8 mm	Peak Field
Shell id/od	685.8/687.1 mm	
End plate thickness	12.7 mm	
Table 2: Computed values of normal 1	armonics (b _a) at 1 T	50 4
Harmonic No. 2 4	6 8 10	
Harmonic No. 2 4 Harmonics@1T 0.0 -0.1	6 8 10 0.4 -3.1 1.3	atral ficht

Magnetic Design of a Superconducting AGS Snake*

R. Gupta, A. Luccio, G. Morgan, W. Mackay, K. Power, T. Roser, E. Willen, BNL and M. Okamura, RIKEN

armin V OPERA 2 e straight magnet with the as in helical section. The field

I(A) al field), peak field line on the putation of the expected quench

The sextupole harmonic along the magnet axis VE VECTOR FIELDS computed by integrating By MORGAN ENDS: Minimize harmonic content by a judicious choice of angles of the current blocks as they traverse side-to-side in the ends.

The magnitude and the components of field on the magnet axis.

position of the beam as function of

vial position inside the helical magnet

500 1000 1500

100 150

OPERA3d model of the coils with the magnitude of the field superimposed on the conductor for $B_0(0,0,0)$ = 3.12 T. The iron yoke is not shown for clarity.

3

The axial component of the field along the nominal beam path. The integral value is made zero with the help of a solenoidal winding on the beam tube.

SUMMARY

The design and analysis of a partial helical snake for AGS has been completed. A number of software techniques have been developed to obtain a design that satisfies the basic requirements.

REFERENCES

[1] T. Roser, et al., "Acceleration of Polarized Beams using a Strong Partial Siberian Snake", this conference

[2] E. Willen, et al., "Performance Summary of the Helical Magnets for RHIC", this conference.

[3] M. Anerella, et al., "Engineering of AGS Snake coil Assembly", this conference.

[4] G. Morgan, "Private Communication"

[5] M. Okamura, et al., "Design Study of A Partial Snake for AGS", Proceedings of EPAC 2002.

2003 PARTICLE ACCELERATOR CONFERENCE/Nor 12-16