

HTS Activities and Recent Progress at BNL

Ramesh Gupta

Brookhaven National Laboratory Upton, NY 11973 USA

July 31, 2015

HTS Activities and Recent Progress at BNL

Ramesh Gupta

HTS Magnet Program at BNL

- HTS magnet R&D over a wide range:
 - High field, Medium field and low field (high temperature)
 - Many geometries solenoid, racetrack, cosine theta, curve coils
- Number of HTS coils/magnets designed built & tested:
 - Well over 150 HTS coils and well over 15 HTS magnets
- Type of HTS used:
 - Bi2223, Bi2212, ReBCO, MgB₂ wire, cable, tape
- Amount of HTS acquired:
 - Over 50 km (4 mm tape equivalent)
- Our recent activities have been largely on magnets with ReBCO

Completed HTS Magnet Programs

- Magnet Division
 - 25 mm aperture 16 T HTS solenoid (SBIR)
 - 100 mm aperture 9 T HTS solenoid (SBIR)
 - 100 mm aperture "12.5 T @27 K" HTS SMES solenoid (arpa-e)
 - HTS quadrupole for RIA (Collaboration with MSU)
 - Bi2223 HTS tape common coil dipole (funded by DOE)
 - Bi2212 Rutherford cable Common Coil Collider Dipole (DOE)
 - HTS solenoid for Energy Recovery Linac (BNL project)
 - HTS magnet for NSLS (BNL Project)
 - Cosine theta dipole with 4 mm YBCO/ReBCO tape (SBIR)
 - Cosine theta dipole with 12 mm YBCO/ReBCO tape (SBIR)
 - And a few others

HTS Activities and Recent Progress at BNL

Current HTS Magnet Programs

- High Field HTS solenoid for IBS, Korea (Work for Others)
- High field collider dipole (Phase II STTR)
- Curved ReBCO tape dipole (Phase II SBIR)
- MgB₂ solenoid (Phase II SBIR)
- High field open HTS midplane dipole (Phase I SBIR)
- High radiation HTS Quadrupole for FRIB (Collaboration)
- HTS solenoid for Energy Recovery Linac (BNL project)

A wide variety of applications and collaborative work is the nature of our HTS magnet program

Magnet Division

A Brief Review of Select HTS Magnet Programs

- 1. High Field Large Stress (~400 MPa) HTS Solenoids
- 2. High Radiation/Energy Deposition Quadrupoles

Common Features:

SS tape insulation, either to deal with large stresses or to provide radiation resistant insulation and help in quench protection

HTS Activities and Recent Progress at BNL

Path to a 30-40 T Solenoid

Goal: Develop high field solenoid for Muon Cooling

Several coils (build and test in their own structure, then combine):

- a) >12 T HTS solenoid (insert): 25 mm, 14 pancakes, 4 mm tape
- b) >10 T HTS (midsert): 100 mm, 24 pancakes, 4 mm tape
- c) >10 T LTS (outsert): NbTi and/or Nb₃Sn cable

HTS Activities and Recent Progress at BNL

Ramesh Gupta

HTS Activities and Recent Progress at BNL

Ramesh Gupta

DOKHÆVEN Large Aperture High Field HTS Magnet NATIONAL LABORATORY (a wide range of operating temperature) Superconducting **Magnet Division** PBL/BNL 100 mm HTS Solenoid Test for Muon Collider 300 275 Peak Field on Coil at 250 A : ~9.2 T 250 225 Coil operated with margin at 250 A P 200 Current (175 Half midsert (12 pancakes) 150 125 100 75 Run stopped at 250 A 50 25 0 0 5 65 70 75 80 10 15 20 25 30 55 60 50 Temp(K) > Half midsert operated at 250 A @4 K Full midsert (24 pancakes) (6.4 T field on axis, 9.2 T peak field on coil

HTS Insert + midsert designed to generate ~22 T and with Nb₃Sn outsert ~35 T

HTS Activities and Recent Progress at BNL

Ramesh Gupta

Supta

High Field HTS SMES Coil

HTS Activities and Recent Progress at BNL

Ramesh Gupta

SMES Options with HTS

Superconducting Magnet Division

- High Temperature Option (~65 K): Saves on cryogenics (Field ~2.5 T)
- High Field (~25 T) Option: Saves on Conductor (Temperature ~4 K)

Previous attempts:

LTS: up to ~5 T

HTS: few Tesla (high temp. to save on cryo)

Our analysis on HTS option:

Presently conductor cost dominates the cryogenic cost by an order of magnitude

High field HTS could be game changer:

- ✓ Very high fields: 25-30 T (E α B²)
 - Only with HTS (<u>high risk, high reward</u>)

Also: A medium field and medium temperature option (a new record <u>12.5T@27K</u> demonstrated, thanks to arpa-e)

HTS Activities and Recent Progress at BNL

Ramesh Gupta

The Basic Demo Module

High Risk, High Reward R&D funded by arpa-e

Aggressive parameters:

Field: 25 T@4 K

Bore: 100 mm

Hoop Stresses: 400 MPa

Conductor: ReBCO

HTS Activities and Recent Progress at BNL

Ramesh Gupta

Large Scale SMES <u>Concept</u> (1)

Superconducting Magnet Division

- A torus would consist of a large number of solenoid module
- Field becomes parallel => less amount of conductor required

HTS Activities and Recent Progress at BNL

Ramesh Gupta

Large Scale SMES <u>Concept</u> (2)

Superconducting Magnet Division

GJ scale GRID storage system that can fit in a room!
➢ Moreover, a small B_⊥ (<0.5 T) for a large B_{//} (30 T) means a major reduction in conductor cost (~1/5 with an optimized HTS)

HTS Activities and Recent Progress at BNL

Ramesh Gupta

Magnet Division

Design Parameters of BNL Demonstration Coil

Stored Energy	1.7	MJ
Currrent	700	Amperes
Inductance	7	Henry
Maximum Field	25	Tesla
Operating Temperature	4.2	Kelvin
Overall Ramp Rate	1.2	Amp/sec
Number of Inner Pancakes	28	
Number of Outer Pancakes	18	
Total Number of Pancakes	46	
Inner dia of Inner Pancake	102	mm
Outer dia of Inner Pancake	194	mm
Inner dia of Outer Pancake	223	mm
Outer dia of Outer Pancake	303	mm
Intermediate Support	13	mm
Outer Support	7	mm
Width of Double Pancake	26	mm

High field and big radius create large stresses (~400 MPa)

HTS Activities and Recent Progress at BNL

Ramesh Gupta

July 31, 2015

14

Magnet Division

HTS Coil Winding

HTS Activities and Recent Progress at BNL

Ramesh Gupta

HTS Pancakes

Superconducting Magnet Division_

~210 meter i.d., 12 mm tape, 258 turns

Two Pancakes Connected with Spiral Splice Joint

- High strength HTS tape, co-wound with SS tape (for insulation and added strength)
- Thickness of SS tape and copper on HTS adjusted to optimize the performance

HTS Activities and Recent Progress at BNL

Ramesh Gupta

77 K Pre-Test of Pancakes (inner)

Superconducting Magnet Division

All pancakes are individually pre-tested at 77 K for QA check (a unique benefit of HTS)

Two single pancakes powered in series.

🔳 lc (A)

l n

July 31, 2015

limited by

the companion pair

17

HTS Activities and Recent Progress at BNL

Ramesh Gupta

77 K Test of a Series of Outer Pancakes (mechanical and electrical properties adjusted)

Superconducting Magnet Division

Adjustment in SS tape thickness and amount of Cu on HTS tape

HTS Activities and Recent Progress at BNL

Ramesh Gupta

Magnet Division

Double Pancake 77 K QA Test

Coils, Test Fixtures and Support Structure

Pancake coils: inner and outer 77 K Test Fixture for outer

HTS Activities and Recent Progress at BNL

Ramesh Gupta

Inner and Outer Coils Assembled

Superconducting Magnet Division

Inner Coil (102 mm id, 194 mm od) 28 pancakes

Outer Coil (223 mm id, 303 mm od) 18 pancakes

Total: 46 pancakes

HTS Activities and Recent Progress at BNL

Ramesh Gupta

Final Assembly

Superconducting Magnet Division

Outer inserted over inner coil

HTS Activities and Recent Progress at BNL

SMES coil in iron laminationsRamesh GuptaJuly 31, 201522

Magnet Division_

Low Temperature Test Results

HTS Activities and Recent Progress at BNL

Ramesh Gupta

HTS SMES Coil High Field Tests

Superconducting

Magnet Division

Peak fields higher

HTS Activities and Recent Progress at BNL

Ramesh Gupta

SMES Coil Run on 5/21/14

HTS Activities and Recent Progress at BNL

Ramesh Gupta

HTS Quadrupole for RIA/FRIB

RIA: Rare Isotope Accelerator FRIB: Facility for Rare Isotope Beams

HTS Activities and Recent Progress at BNL

Ramesh Gupta

Radiation Tolerant HTS Quad for the Fragment Separator Region of FRIB

To create intense rare isotopes, 400 kW beam hits the production target.

Magnets in the fragment separator region are exposed to unprecedented radiation and heat loads. HTS can efficiently remove that at elevated temperatures.

First Generation HTS Quad for FRIB

Superconducting

Magnet Division

Mirror cold iron

Mirror warm iron

Warm Iron Design with Bi2223 HTS

BROOKHAVEN NATIONAL LABORATORY Superconducting Magnet Division

Second Generation HTS Quad for FRIB Fragment Separator Region

Superconducting Magnet Division

YBCO/ReBCO from two vendors ASC and SuperPower

HTS Activities and Recent Progress at BNL

Ramesh Gupta

HTS Activities and Recent Progress at BNL

Ramesh Gupta

32

Radiation Damage Studies of 2G HTS (YBCO)

Magnet Division

NA

S

Figure 2. The BLIP facility.

Beam Tunnel Big Wall

Figure 3. BLIP Beam Tunnel and Target Schematic

From a BNL Report (11/14/01)

The Brookhaven Linac Isotope Producer (BLIP) consists of a linear accelerator, beam line and target area to deliver protons up to 200 MeV energy and 145 μ A intensity for isotope production. It generally operates parasitically with the BNL high energy and nuclear physics programs.

HTS Activities and Recent Progress at BNL

Ramesh Gupta

Impact of Irradiation on 2G HTS

Superconducting

Magnet Division

HTS Activities and Recent Progress at BNL

Ramesh Gupta

1

Radiation Damage from 142 MeV protons in SP & ASC Samples (measurements at @77K in 1 T Applied Field)

Superconducting Magnet Division

BROOKHAVEN

NATIONAL LABORATORY

- While the SuperPower and ASC samples showed a similar radiation damage pattern in the absence of field, there is a significant difference in the presence of field (particularly with respect to the field angle).
- HTS from both vendors, however, show enhancement to limited damage during the first 10 years of FRIB operation (good news)!!!

HTS Activities and Recent Progress at BNL

Ramesh Gupta

Cryo-cooler based HTS Coil R&D

Coils reached <40 K (goal was 40 to 50 K)
25 W at 50 K can be removed by a number of cryo-coolers

Magnet Division_

3d and Curved HTS Coils

HTS Activities and Recent Progress at BNL

Ramesh Gupta

Cosine (0) Coil with Complex Ends PBL/BNL (two) STTR

No measurable degradation

HTS Activities and Recent Progress at BNL

Ramesh Gupta

Magnet Division

Curved HTS Coil

Ramesh Gupta

Magnet Division_

Quench Protection

HTS Activities and Recent Progress at BNL

Ramesh Gupta

BNL HTS Quench Protection Strategy

A multi-pronged strategy developed and used at BNL in various HTS programs:

- > Detect early and react fast with an advance quench protection system
- 1. Developed an advanced low-noise electronics and noise cancellation scheme to detect pre-quench voltage (phase) where HTS coils can operate safely
- 2. Fast energy extraction with electronics to handle high isolation voltage (>1kV)
- **3.** Use inductively coupled copper discs for fast energy extraction. Co-winding with stainless steel tape helps in quench protection.

- BNL has worked on a variety of HTS magnets covering a wide range and a variety of geometries with a number of collaborators.
- In addition to HTS, BNL has expertise with NbTi and Nb₃Sn magnets which will be helpful in developing the entire system.
- BNL is the only US laboratory with a large operating superconducting accelerator complex - Relativistic Heavy Ion Collider (RHIC). This gives a very useful perspective and support to superconducting magnet program.
- We are looking forward to working with PPPL in this possible ground breaking application of HTS magnets in fusion technology.