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Basic Superconductivity

The purpose of this lecture is to give you a
brief overview of superconductivity.

This introduction will cover some history,
basic principles and a few aspects of
superconductivity that are relevant to
designing accelerator magnets.
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Superconducting Accelerator Magnets
A Brief History

1908 Heinke Kemerlingh Onnes achieves very low temperature (<4.2 K)
1911 Onnes and Holst observe sudden drop in resistivity to essentially zero

 Superconductivity is born !
1914 Persistent current experiments
1933 Meissner-Ochsenfeld effect observed
1935 Fritz and London theory
1950 Ginsburg - Landau theory
1957 BCS Theory
1967 Observation of Flux Tubes in Type II superconductors
1980 Tevatron: The first accelerator using superconducting magnets
1986 First observation of High Temperature Superconductors
It took ~70 years to get the first accelerator with conventional superconductors.
How long will it take for HTS to get to accelerator magnets? Have patience!
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Critical Surface of Nb-Ti

Magnet designers dreams material:
      A material that remains superconducting at higher temperatures and at higher fields!

But it must also have good material properties!!!

Critical Surface
The surface on 3-d (J,T,B) volume within which the material remains superconducting.

In a magnet, the
operating point must

stay within this
volume with a suitable

safety margin!
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Meissner Effect

A remarkable observation in superconductors:
They exclude magnet flux lines from going through them.

Attenuation of magnetic field and
shielding currents in Type I superconductors

Normal Conductor Superconductor

Courtesy: Wilson

Courtesy: Schmuser

Meissner and Ochsenfeld (1933)
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Type I and Type II Superconductors

Type I:
   Also known as

 “soft superconductors”.
   Completely exclude flux lines

 (Meissner Effect).
   Allow only small field (<< 1 T).
Not good for accelerator magnets.

Type II:
   Also known as “hard superconductors”.
   Completely exclude flux lines up to Bc1
   but then part of the flux enters till Bc2
•Important plus: Allow much higher fields.
•These are the one that are used in
building accelerator magnets.

Courtesy: Schmuser

Normal phase
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Critical Surface of
Type I Superconductors

Critical Temperature (K)
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Type I
superconductors
are obviously
NOT suitable for
high field magnet
applications.
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Magnesium Diboride (MgB2)

Courtesy: Wilson

Bc2 vs. Tc

All present accelerator magnets are made with NbTi
High field R&D magnets are being built with Nb3Sn 

MgB2 is LTS with high Tc (perhaps highest possible)
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Nb-Ti Alloys at 4.2 K and 1.8 K

Courtesy:
P. Lee (U Of W-M)

A Reasonable
Assumption
for Nb-Ti:
3 T increase in
Bc between
4.2 K and 1.8 K

All present superconducting accelerators operate at ~4.5 K and use Nb-Ti.
LHC magnets will operate at ~1.8 K, to generate higher fields, while still using Nb-Ti.
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Critical Current Density
as a Function of Field

Performance of 0.8 mm dia wire
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Low Temperature Superconductors
(LTS) for Accelerator Magnets

• Conductors that are currently being used in building accelerator
magnets are all Type II Low Temperature Superconductors.

• NbTi, a ductile material, has been the conductor of choice so far.
All accelerator magnets that have been and are being built, use this
superconductor.

• For future high field magnet applications one must turn to Nb3Sn,
etc.(higher Bc2). However, Nb3Sn is brittle in nature, and presents
many challenges in building magnets.



Superconducting
Magnet Division

Ramesh Gupta, BNLJanuary 16-20, 2006, Superconducting Accelerator Magnets Slide No. 13 of Lecture 2 (Superconductivity)

Type I and Type II Superconductors
London Penetration Depth and Coherence Length

• “London Penetration Depth” tells how field falls or the depth to which field may penetrate
• “Coherence Length” tells how Cooper pair density increases (indicates the range of
interaction between Cooper pairs)

Courtesy: Schmuser

κ = λL/ξ
Ginzburg-Landau Parameter

Note: Pure Niobium (Nb) is type II superconductor
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Current Transport in
Bulk Superconductors

Courtesy: Schmuser

Motion of these fluxoids generates heat.
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Nb-Ti Microstructure

High critical current density microstructure in a conventionally processed Nb-Ti microstructure.
Courtesy: P.J. Lee (University of Wisconsin-Madison)

These defects are
crucial for a
superconductor
to become usable
for magnetic field
application.
These are the one
that allow fields.
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Difference Between the Superconductor
Requirements for Superconducting Magnets and

Superconducting RF Cavities for Particle Accelerators

• For superconducting magnet applications, the presence of
certain defects is essential.

• For superconducting RF cavities, one needs very high purity
materials, with no defects.

• RF cavities are made with high purity Niobium

Note: Niobium (Nb) is only one of three metals that is Type
II superconductor (others are vanadium and technetium).

Hc1 of Niobium ~ kG.

Note that high purity bulk Niobium (RRR >150) is Type I
superconductor.
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Flux Jumping

Initially, when the field is raised, large screening currents are generated to oppose the
changes. These current densities may be much larger than Jc (critical current density
till which material remains superconducting) A current higher than Jc will create
Joule heating. However, these large currents soon die and attenuate to Jc, which
persists.
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Instability from Flux Jumping

Courtesy: Wilson

Small filament diameter is required to reduce flux jumping.
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Magnetization Effects in
Superconducting Filaments

Courtesy: Schmuser

The above magnetization
creates persistent current,
a major issue in SC magnets.

Persistent current induced magnetization:

Animesh Jain to discuss persistent
currents in significant details.
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Persistent Current-induced Harmonics
in High Field (Nb3Sn Magnets)

 Courtesy: Ghosh

Measured magnetization (NbTi)
Persistent current induced magnetization :

Problem in Nb3Sn Magnets because
(a) Jc is several times higher
(b) Filament size is big and gets bigger
after reaction due to sintering

In most Nb3Sn available today, the effective filament diameter is an order of magnitude larger than that
in NbTi. The obvious solution is to reduce filament diameter; however, in some cases it also reduces Jc.

A small filament diameter is important for :
•  increasing stability
•  reducing persistent currents
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Persistent Current-induced Harmonics
(may be a problem in Nb3Sn magnets, if nothing done)

Nb3Sn superconductor, with the technology now in use, is expected to generate persistent current-
induced harmonics which are a factor of 10-100  worse than those measured in Nb-Ti magnets.

In addition, a snap-back problem is observed when the acceleration starts (ramp-up) after injection at
steady state (constant field).

Measured sextupole harmonic
in a Nb-Ti magnet

Measured sextupole harmonic
in a Nb3Sn magnet

Snap back

Either reduce the effective filament diameter or come up with a magnetic design
that minimizes the effect of magnetization in the magnets (LBL, FNAL, TAMU).

aJM cπ3
4

=

Magnetization :
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Manufacturing of Nb-Ti Wires
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A Typical Superconducting Cable

Filaments in an actual cable
(Filament size in SSC/RHIC magnets: 6 micron)
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Stability of Superconducting Wire
(Wire is Made of Many Filaments)

Filaments not coupled Coupled filaments

Courtesy: Wilson

Coupling of filaments (in changing field) is undesirable
because it increases effective radius.
This brings back flux jump instability and magnetization.

aJM cπ3
4

=

Magnetization :
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Twisting: The Key to Stability

A wire composed of twisted filaments
Courtesy: Wilson

Rutherford cable
Twisting significantly reduces the influence coupling.
The sign of dB/dt reverses every half pitch.

Wires are twisted in cable
for the same reason, i.e.,
to reduce the coupling.
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Courtesy: Ghosh, BNL

Cable Measurement Set-up at BNL
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LOCALLY DAMAGED CABLE. 

SMOOTH CABLE

Nb3Sn Cable in Cu- Channel

Courtesy: Ghosh, BNL

n-value:
A good indicator of
the quality of cable.

A lower “n-value” means
a slow transition from
superconducting to
normal phase, which
generally indicates some
sort of damage in the
cable.

V ∝ (I/Ic)n
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Conventional Low Temperature Superconductors (LTS)
and New High Temperature Superconductors (HTS)

Resistance of Mercury falls suddenly below
meas. accuracy at very low (4.2) temperature

Low Temperature Superconductor Onnes (1911)
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New materials (ceramics) loose their resistance
at NOT so low temperature (Liquid Nitrogen)!
High Temperature Superconductors (HTS)
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Popular HTS Materials of Today

• BSCCO 2223    (Tc ~ 110 K)
• BSCCO 2212 (Tc ~ 85 K)
• YBCO (Tc ~ 90 K)

• MgB2 is a low temperature superconductor (LTS) with critical
temperature ~39 K (almost highest possible by current theories).

Of these only BSCCO2212 and BSCCO2223 (first generation) are
now available in sufficient quantity to make accelerator magnets.
YBCO (second generation) HTS is expected to be available soon
(couple of years) in sufficient lengths to make magnets. Second
generation superconductor is expected to have a much lower cost.
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Some Remarkable Properties of HTS
(High Temperature Superconductors)

Also compare the high
field performance of
“High Temperature
Superconductors (HTS)”
to that of “Low
Temperature
Superconductors (LTS)”.

R vs. T

ASC

HTS retains their
superconductivity to a
much higher temperature

HTS
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High Temperature Superconductors
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High Temperature Superconductors (HTS)
now carry significantly higher current over
Low Temperature Superconductors (LTS), at
low temperature high fields (see below) or at
high temperature low fields (see right).
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High Field Superconductors

Differences between Low field and High field superconductors:

Low field superconductors (NbTi) are ductile.
The coils can be wound without significantly damaging the conductors.

High field superconductors (Nb3Sn and HTS) are brittle!

One has to be very careful in winding coils with these brittle material
or use an alternate design to minimize the damage on conductors.

One can also wind the coil before they become brittle (& superconducting) and
react the material after winding to make them superconductor.
This is referred to as “Wind and React” technique and it requires everything in the
coil to go through the high temperature (650 C or more) reaction process. One has
to be careful in choosing material, etc.
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Why Use Superconducting
Magnets in Accelerators?

Use of superconductors in accelerator magnets generate field much higher
than what can be achieved from the normal conductors.

Two major reasons for using superconducting
magnets in the accelerators:
 Cost advantage

In high energy circular hadron colliders,
superconducting magnets reduce the size of
a machine. This usually translate in to a
reduction in the overall machine cost.
Superconducting magnets also lower the
power consumption and hence the cost of
operating a high energy machine.

 Performance advantage
In interaction regions, a few high field and
high field quality magnets may significantly
enhance the luminosity of the machine. In
this case magnet costs may be large but the
overall returns to experimentalists are high.

Courtesy: Martin Wilson
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