Evaluation of RHIC Magnets for EIC (higher energy and higher temperature)

RHIC Arc Dipole (80 mm)

Ramesh Gupta
Superconducting Magnet Division
September 17, 2020

Electron Ion Collider – eRHIC
Evaluation of RHIC Arc Dipole (80 mm) for EIC (higher energy and higher temperature)

Basic questions:

Can RHIC magnets operate safely at 275 GeV at elevated temperature?

What is the temperature margin?

How is the field quality (on-axis and off-axis)

The following is an initial evaluation of RHIC 80 mm aperture dipoles.
Magnet stability (from Silvia Verdú Andrés)

- Which is the preferred margin for stable operation (no quench)?
- Does the margin depend on the magnet topology?
- What is the maximum current (or field) for which the RHIC magnets were trained?
- Do we need to train the RHIC magnets to provide the field values required for EIC?
- How close can training bring the magnets to the simulated quench temperature?
- Training involves making the magnet quench. There are two pathways to quench: increase temperature (e.g. by applying dynamic heat load) or increasing current through coils. Which method can be used to train the magnets and is there any limitation? (Note magnets will remain in the RHIC tunnel.)
RHIC 80 mm ARC Dipole
(performance computed, field quality measured)

Table I
Basic design parameters of RHIC arc dipoles

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coil inner, outer radius</td>
<td>40 mm, 50 mm</td>
</tr>
<tr>
<td>Yoke inner, outer radius</td>
<td>59.7 mm, 133.4 mm</td>
</tr>
<tr>
<td>Field, current at injection</td>
<td>0.40 T, 0.57 kA</td>
</tr>
<tr>
<td>Maximum design field, current</td>
<td>3.46 T, 5.09 kA</td>
</tr>
<tr>
<td>Computed quench at 4.5° K</td>
<td>8.25 kA</td>
</tr>
<tr>
<td>Magnetic length at 3.46 Tesla</td>
<td>9.44 m</td>
</tr>
</tbody>
</table>

Figure 2. The measured current dependence of harmonics during up ramp (and 20 second wait) in RHIC arc dipoles.

Temperature Margin at different fields

• Specific evaluation with ROXIE models (today)
• A broader evaluation with the basic properties of the superconductor used in various RHIC magnets (next presentations)
• These calculations assume perfect magnets and ignore training quenches, etc. (this could be a significant issue for insertion magnets unless field or field gradient reduced)
• Desired higher requirements for sextupole
ROXIE Model
Model Calculations at RHIC Design Field (250 GeV@3.46 T)
Validation of the ROXIE Model

Values from the reference paper:

<table>
<thead>
<tr>
<th>Maximum design field, current</th>
<th>3.46 T, 5.09 kA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computed quench at 4.5° K</td>
<td>8.25 kA</td>
</tr>
</tbody>
</table>

MAIN FIELD (T): 3.46
PEAK FIELD IN CONDUCTOR (T): 4.03
CURRENT IN CONDUCTOR (A): 5090
PERCENTAGE ON THE LOAD LINE : 76.17
QUENCHFIELD (T): 5.28
TEMPERATURE MARGIN TO QUENCH (K): 1.12
PERCENTAGE OF SHORT SAMPLE CURRENT: 61.5
Field in conductor at RHIC design field

@B₀ = 3.46 T
@B_0=3.46 T
I = 5.09 kA
T = 4.5 K
Computed Quench Temperature Margin

$@B_0=3.46\ T$
$I = 5.09\ kA$
$T = 4.5\ K$
Computed Quench Field Margin

@B₀ = 3.46 T
I = 5.09 kA
T = 4.5 K
Model Calculations at EIC Design Field (275 GeV@3.81 T)

Temperature: 4.5 K
Summary of Calculations for 275 GeV @4.5 K

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAIN FIELD (T)</td>
<td>-3.841283</td>
</tr>
<tr>
<td>BLOCK NUMBER</td>
<td>16</td>
</tr>
<tr>
<td>PEAK FIELD IN CONDUCTOR 128 (T)</td>
<td>4.4723</td>
</tr>
<tr>
<td>CURRENT IN CONDUCTOR 128 (A)</td>
<td>-5600.0000</td>
</tr>
<tr>
<td>LOWEST FIELD IN CONDUCTOR 125 (T)</td>
<td>2.6075</td>
</tr>
<tr>
<td>SUPERCONDUCTOR CURRENT DENSITY (A/MM2)</td>
<td>-1833.8841</td>
</tr>
<tr>
<td>COPPER CURRENT DENSITY (A/MM2)</td>
<td>-818.6983</td>
</tr>
<tr>
<td>PERCENTAGE ON THE LOAD LINE</td>
<td>84.2163</td>
</tr>
<tr>
<td>QUENCHFIELD (T)</td>
<td>5.3105</td>
</tr>
<tr>
<td>TEMPERATURE MARGIN TO QUENCH (K)</td>
<td>0.7574</td>
</tr>
<tr>
<td>PERCENTAGE OF SHORT SAMPLE CURRENT</td>
<td>72.8420</td>
</tr>
</tbody>
</table>
Field in conductor at EIC design field

@\(B_0 = 3.8\) T
@B₀ = 3.8 T
I = 5.6 kA
T = 4.5 K
$@B_0 = 3.8 \text{ T}$
$I = 5.6 \text{ kA}$
$T = 4.5 \text{ K}$
Computed Quench Field Margin

@\(B_0 = 3.8 \) T
I = 5.6 kA
T = 4.5 K
Model Calculations at EIC Design Field (275 GeV@3.81 T)

Temperature: 5 K
Summary of Calculations for 275 GeV @ 5 K

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAIN FIELD (T)</td>
<td>-3.841283</td>
</tr>
<tr>
<td>BLOCK NUMBER</td>
<td>16</td>
</tr>
<tr>
<td>PEAK FIELD IN CONDUCTOR 128 (T)</td>
<td>4.4723</td>
</tr>
<tr>
<td>CURRENT IN CONDUCTOR 128 (A)</td>
<td>-5600.0000</td>
</tr>
<tr>
<td>LOWEST FIELD IN CONDUCTOR 125 (T)</td>
<td>2.6075</td>
</tr>
<tr>
<td>SUPERCONDUCTOR CURRENT DENSITY (A/MM²)</td>
<td>-1833.8841</td>
</tr>
<tr>
<td>COPPER CURRENT DENSITY (A/MM²)</td>
<td>-818.6983</td>
</tr>
<tr>
<td>PERCENTAGE ON THE LOAD LINE</td>
<td>93.8675</td>
</tr>
<tr>
<td>QUENCHFIELD (T)</td>
<td>4.7645</td>
</tr>
<tr>
<td>TEMPERATURE MARGIN TO QUENCH (K)</td>
<td>0.2574</td>
</tr>
<tr>
<td>PERCENTAGE OF SHORT SAMPLE CURRENT</td>
<td>88.7707</td>
</tr>
</tbody>
</table>
Field in conductor at EIC design field

@B_o = 3.8 T
@$B_o=3.8 \text{ T}$
$I = 5.6 \text{ kA}$
$T = 5 \text{ K}$
@B_o = 3.8 T
I = 5.6 kA
T = 5 K
$B_0 = 3.8 \text{ T}$
$I = 5.6 \text{ kA}$
$T = 5 \text{ K}$
Summary

- Initial evaluation of RHIC 80 mm arc dipole made for operating it at 3.8 T for 275 GeV proton.
- In addition to higher field, the impact of higher temperature on superconducting coils is of significant interest. Impact is evaluated.
- Beside arc quadrupole, arc dipole is the most reliable magnet in the RHIC lattice. Situation may be worse for other magnets for the same lattice.
- Initial evaluation point to difficult decisions ahead