Evaluation of RHIC Magnets for EIC (higher energy and higher temperature)

RHIC Arc Dipole (80 mm)

Ramesh Gupta Superconducting Magnet Division September 17, 2020 Electron Ion Collider – eRHIC

BROOKHAVEN

Evaluation of RHIC Arc Dipole (80 mm) for EIC (higher energy and higher temperature)

Basic questions:

- Can RHIC magnets operate safely at 275 GeV at elevated temperature?
- What is the temperature margin?
- How is the field quality (on-axis and off-axis)
- The following is an initial evaluation of RHIC 80 mm aperture dipoles.

RHIC Magnets for EIC: 80 mm Dipole -R. Gupta, 9/17/20 2 Electron Ion Collider. – eRHIC

Magnet stability (from Silvia Verdú Andrés)

- Which is the preferred margin for stable operation (no quench)?
- Does the margin depend on the magnet topology?
- What is the maximum current (or field) for which the RHIC magnets were trained?
- Do we need to train the RHIC magnets to provide the field values required for EIC?
- How close can training bring the magnets to the simulated quench temperature?
- Training involves making the magnet quench. There are two pathways to quench: increase temperature (e.g. by applying dynamic heat load) or increasing current through coils. Which method can be used to train the magnets and is there any limitation? (Note magnets will remain in the RHIC tunnel.)

RHIC Magnets for EIC 80 mm Dipole -R. Gupta, 9/17/20 3 Electron Ion Collider. – eRHIC

RHIC 80 mm ARC Dipole (performance computed, field quality measured)

Table I Basic design parameters of RHIC arc dipoles

Coil inner, outer radius	40 mm, 50 mm	
Yoke inner, outer radius	59.7 mm, 133.4 mm	
Field, current at injection	0.40 T, 0.57 kA	
Maximum design field, current	3.46 T, 5.09 kA	
Computed quench at 4.5° K	8.25 kA	
Magnetic length at 3.46 Tesla	9.44 m	

Figure 2. The measured current dependence of harmonics during up ramp (and 20 second wait) in RHIC arc dipoles.

R. Gupta, et al., Field Quality Control Through the Production Phase of RHIC Arc Dipoles, Proceedings of the 1995 International Particle Accelerator Conference, Dallas, Texas (1995).

RHIC Magnets for EIC: 80 mm Dipole -R. Gupta, 9/17/20 4 Electron Ion Collider – eRHIC

Temperature Margin at different fields

- Specific evaluation with ROXIE models (today)
- A broader evaluation with the basic properties of the superconductor used in various RHIC magnets (next presentations)
- These calculations assume perfect magnets and ignore training quenches, etc. (this could be a significant issue for insertion magnets unless field or field gradient reduced)
- Desired higher requirements for sextupole

Model Calculations at RHIC Design Field (250 GeV@3.46 T)

RHIC Magnets for EIC: 80 mm Dipole -R. Gupta, 9/17/20 7 Electron Ion Collider. – eRHIC

Validation of the ROXIE Model

Values from the reference paper:

	Maximum design field, current	3.46 T, 5.09 kA
	Computed quench at 4.5° K	8.25 kA
MAIN	J FIELD (T):3.46	Good
PEAK	K FIELD IN CONDUCTOR (T	'): 4.03 Agro 🔪
CURF	RENT IN CONDUCTOR (A):	5090 8.27 kA
PERC	CENTAGE ON THE LOAD LIN	E:76.17
QUEN	ICHFIELD (T): 5.28	
TEME	PERATURE MARGIN TO QUEN	CH(K):1.12
PERC	CENTAGE OF SHORT SAMPLE	CURRENT: 61.5

RHIC Magnets for EIC 80 mm Dipole -R. Gupta, 9/17/20 8 Electron Ion Collider. – eRHIC

Field in conductor at RHIC design field

|B| (T)

$@B_o = 3.46 T$

ROXIE 10.2

RHIC Magnets for EIC 80 mm Dipole -R. Gupta, 9/17/20 9 Electron Ion Collider. – eRHIC

Computed Quench Margin

rhic arc dipole

20/09/14 10:51

@B_o=3.46 T I = 5.09 kA T = 4.5 K

10

RHIC Magnets for EIC: 80 mm Dipole -R. Gupta, 9/17/20

Computed Quench Temperature Margin

rhic arc dipole

20/09/14 10:51

@B_o=3.46 T I = 5.09 kA T = 4.5 K

RHIC Magnets for EIC: 80 mm Dipole -R. Gupta, 9/17/20 11 Electron Ion Collider – eRHIC

Computed Quench Field Margin

@B_o=3.46 T I = 5.09 kA T = 4.5 K

12

RHIC Magnets for EIC: 80 mm Dipole -R. Gupta, 9/17/20

Model Calculations at EIC Design Field (275 GeV@3.81 T)

Temperature: 4.5 K

RHIC Magnets for EIC: 80 mm Dipole -R. Gupta, 9/17/20 13 Electron Ion Collider – eRHIC

Summary of Calculations for 275 GeV @4.5 K

MAIN FIELD (T)	-3.841283
DI AGU NUNDED	1.6
BLOCK NOMBER	Тю
PEAK FIELD IN CONDUCTOR 128 (T)	4.4723
CURRENT IN CONDUCTOR 128 (A)	-5600.0000
LOWEST FIELD IN CONDUCTOR 125 (T)	2.6075
SUPERCONDUCTOR CURRENT DENSITY (A/MM2)	-1833.8841
COPPER CURRENT DENSITY (A/MM2)	-818.6983
PERCENTAGE ON THE LOAD LINE	84.2163
QUENCHFIELD (T)	5.3105
TEMPERATURE MARGIN TO QUENCH (K)	0.7574
PERCENTAGE OF SHORT SAMPLE CURRENT	72.8420

RHIC Magnets for EIC 80 mm Dipole -R. Gupta, 9/17/20 14 Electron Ion Collider – eRHIC

Field in conductor at EIC design field

|B| (T)

 $@B_{o} = 3.8 T$

RHIC Magnets for EIC 80 pm Dipole -R. Gupta, 9/17/20 15

Electron Ion Collider. – eRHIC

40

50

Computed Quench Margin

rhic arc dipole 3.8 T, 4.5 K

20/09/16 17:23

@B_o=3.8 T I = 5.6 kA T = 4.5 K

16

RHIC Magnets for EIC: 80 mm Dipole -R. Gupta, 9/17/20

Computed Quench Temperature Margin

rhic arc dipole 3.8 T, 4.5 K

20/09/16 17:23

@B_o=3.8 T I = 5.6 kA T = 4.5 K

17

RHIC Magnets for EIC: 80 mm Dipole -R. Gupta, 9/17/20

Computed Quench Field Margin

rhic arc dipole 3.8 T, 4.5 K

20/09/16 17:23

@B_o=3.8 T I = 5.6 kA T = 4.5 K

RHIC Magnets for EIC 80 mm Dipole -R. Gupta, 9/17/20 18 Electron Ion Collider – eRHIC

Model Calculations at EIC Design Field (275 GeV@3.81 T)

Temperature: 5 K

RHIC Magnets for EIC 80 mm Dipole -R. Gupta, 9/17/20 19 Electron Ion Collider – eRHIC

Summary of Calculations for 275 GeV @5 K

MAIN	FIELD	(T)		-3.841283
------	-------	-----	--	-----------

BLOCK NUMBER	16
PEAK FIELD IN CONDUCTOR 128 (T)	4.4723
CURRENT IN CONDUCTOR 128 (A)	-5600.0000
LOWEST FIELD IN CONDUCTOR 125 (T)	2.6075
SUPERCONDUCTOR CURRENT DENSITY (A/MM2)	-1833.8841
COPPER CURRENT DENSITY (A/MM2)	-818.6983
PERCENTAGE ON THE LOAD LINE	93.8675
QUENCHFIELD (T)	4.7645
TEMPERATURE MARGIN TO QUENCH (K)	0.2574
PERCENTAGE OF SHORT SAMPLE CURRENT	88.7707

20

RHIC Magnets for EIC 80 mm Dipole -R. Gupta, 9/17/20

Field in conductor at EIC design field

|B| (T)

 $@B_{o} = 3.8 T$

50

RHIC Magnets for EIC: 80 mm Dipole -R. Gupta, 9/17/20 21 Electron Ion Collider – eRHIC

Computed Quench Margin

rhic arc dipole for EIC: 3.8 T, 5.0 K, 5.6 kA

20/09/17 16:54

@B_o=3.8 T I = 5.6 kA T = 5 K

22

RHIC Magnets for EIC: 80 mm Dipole -R. Gupta, 9/17/20

Computed Quench Temperature Margin

rhic arc dipole for EIC: 3.8 T, 5.0 K, 5.6 kA

20/09/17 16:54

@B_o=3.8 T I = 5.6 kA T = 5 K

23

RHIC Magnets for EIC: 80 mm Dipole -R. Gupta, 9/17/20

Computed Quench Field Margin

T = 5 K

Electron Ion Collider - eRHIC 24 RHIC Magnets for EIC: 80 mm Dipole -R. Gupta, 9/17/20

Summary

- Initial evaluation of RHIC 80 mm arc dipole made for operating it at 3.8 T for 275 GeV proton.
- In addition to higher field, the impact of higher temperature on superconducting coils is of significant interest. Impact is evaluated.
- Beside arc quadrupole, arc dipole is the most reliable magnet in the RHIC lattice. Situation may be worse for other magnets for the same lattice.
- Initial evaluation point to difficult decisions ahead

RHIC Magnets for EIC: 80 mm Dipole -R. Gupta, 9/17/20 25 Electron Ion Collider. – eRHIC