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Requirements

1. Designfield:6T
— Specified operating fieldrange 1 T to6 T

2. Good field (~6 x 10?) region: 20 mm aperture along ~2100 mm

3. Fringe field : significant field required outside along the beam path
— Unique situation, unique solution

4. Field straightness: £100 micron (£ 50 um desired) in ~2100 mm

Field straightness is the most critical and demanding requirement
1 guides and determines the overall design
too risky for industry to take this job
4 well beyond the normal construction errors

corrector magnets become integral part of the overall design
U must have enough magnetic shielding to limit the influence of surrounding
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Superconducting Solenoid with
Superconducting Correctors

« Axial field straightness is achieved by compensating transverse field errors with
horizontal and vertical dipole correctors.

« Corrector dipoles that were previously “inside” the solenoid and to be made of high
current density copper coils are now moved “outside” and made superconducting.

This reduces the solenoid aperture and increases the possible corrector strength.

The current design consists of a number of superconducting corrector dipoles
located outside the superconducting solenoidal coil but within the same yoke iron.

« Significant reduction in size (292mm to 200mm)  Skewbiecke DU

(full length) Sl
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Earlier design with warm corrector

Correctors shown here were placed
inside the superconducting solenoid
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Overall magnetic system consists of: Superconducting

freradese
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1 solenoid o

T Copper I Copper e ™ 1%
. . solenoids l solenoids ::':
*  Main solenoid ) =
Y e

+++++
TOSCA Magnetastat

- including end sections |
+ Correction coils 1™ =
- long and short uuuuu W
- horizontal and vertical R
* Fringe field coils
»  Anti-fringe field coils
* Room temperature magnets
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Superconducting Solenoid System
Cost and Schedule Consideration

Additional important consideration in designing the system:
use existing components to reduce cost (and schedule)

Opportunity for cost saving come from the use of existing:
¢ stainless steel shell
*» RHIC cryostat
s tooling

This made the design a bit more restrictive.
* However, we were able to use all of above without compromising the performance.
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Main Parameter List

Coil i.d. 200 mm
Coil length (main) 2360 mm
Yoke length 2450 mm
Wire, bare 1.78 mm X 1.14 mm (70 mil X 45 mil)
Wire, insulated 1.91 mm X 1.27 mm (75 mil X 50 mil)
Wire |, specification (4.2 K, 7 T) >700 A
Turn-to-turn spacing (axial, radial) 2.03 mm X 1.42 mm (80 mil X 56 mil)
Number of layers (main, full length) 22 (11 double layers)
Additional layers for trimming end fields (in series) 4 (2 double layer)
Length of layers for trimming end fields 173 mm on each end
Coil 0.d. (without trim) 262.6 mm
Coil o.d. (with trim) 274 mm
Coil 0.d. with trim coil and over-wrap 277 mm
Maximum design field 6T
Currentfor6 T ~460 A
Peak Field on the conductor @ 6T ~6.5 T (~8% peak field enhancement)
Computed Short Sample @4.2 K ~7.0T (6.6 T, specified)
Stored energy @ 6 T ~1.4 MJ
Inductance ~14 Henry
Yoke i.d. 330 mm
Yoke o.d. 454 mm
Yoke width (radial) 62 mm
Field on the axis 1to6T
Maximum computed error on axis ~6 X 103 (-1050 to 1050 mm and within 20 mm )
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Computer Models
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Z [mm

Lorentz Forces (simple design)
Contour Plot of Force Density
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Radial Lorentz force (hoop stress) : ~24 MN
- see A. Marone’s presentation

Magnetic Design

Axial force: ~35 kN per side

- large axial forces, only in the ends
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Axial force containment

* Insert structure towards the end of the coil to contain forces

* Coil is wound continuously through the end structure to
keep axial forces contained throughout (during quench).
« If the coils were separate and one in the end quneches then

the end forces will no longer be balanced (not acceptable).

* Quench protection is such that the full length double layers

120.0 180.0 2000 24

0. 53881005 -0. 190?4493 0 16752020

are quenched

[T e s e ey e — =0
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Structure o

for
containing

Stored Energy: large axial

~1.4 MJ; force

Inductance :

%OSmfiﬁ‘;neUOB = -0.19064493 0157520202
~14 Henry e
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Relative Field Errors on the Axis

Relative field errors (computed) to 1075 mm <5 x 103
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o Opera
Initial specifications were for 1050 mm <5 x 103

However, the primary goal is to keep field straight rather than uniform.
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Corrector Design
Considerations
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Design Considerations for correctors (1)

* For cooling to work well, proton and electron beams must be
aligned within £100 micron (x50 micron desired).

e Proton beam is aligned to the solenoid axis with long correctors
(entire length).

» Electron field follows the solenoid magnetic axis. However, the
tube on which the solenoid is wound can’t be perfect and the coil
winding can’t be perfect either. Moreover, the weight of the coil will
also cause some sag.

e One must also deal with the field from the material in surrounding.

 Therefore, many short correctors are needed to achieve the
desired straightness magnetically.

 The number and strength of short correctors is chosen based on
estimated errors (a reasonable cost to risk ratio).
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Design Considerations for correctors (2)

* Need both long and short correctors
 Need both horizontal and vertical correctors

« Short correctors must create a dipole field of 0.02 T and long

correctors 0.006 T (estimated by A. Jain)
e Should have a minimum layers to minimize schedule and cost
« Slotted design to minimize schedule conflict with other projects

e Should have low operating current to minimize heat load
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Estimating Axis Correction
(without a Corrector Design!)

Generate a hypothetical axial profile of vertical offset of solenoid axis:
- 4 axial harmonics of wavelengths 0.5, 1.0, 2.0, and 4.0 meters
- 0.100 mm amplitude for all modes; all modes add in phase.

Break up solenoid into 50mm long segments, with each segment offset
and tilted as per the profile generated.

Compute the vertical field (8)) profile on-axis.
Decompose By profile into spatial harmonics (40 terms).
Assume ~N/2 strongest modes can be zeroed using N correctors.

(Only an approximation! Ideally, the resulting axis offsets should be
minimized using real corrector transter functions.)

Compute the residual B, profile on-axis.

Compute the residual axis offset profile.

Courtesy: Animesh Jain

0;‘1\-\@ 0 Nuclear Ph .
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Estimation and correction of axis offset

with 0.02 T correctors

Hypothetical Vertical Offset Profile
(before correction)

Computed Profile of Vertical Field, B,
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Corrector Design
Magnetic
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Field on the Corrector

THunfz01D 11221

 Correctors will be placed outside the solenoid
e They reside in a low field region (<1% of 6T)
 This helps significantly because:

» Large margin for the same wire

» Low Lorentz forces on the conductor

AR D 39:19:81
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L
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Combined Corrector Design

Both horizontal and vertical dipole correctors are accommodated in a single layer

Surface contours: BMOD
1.957248E-001

» Top & Bottom Windings for Vertical

o Left & Right Windings for Horizontal
Less efficient in terms of conductor use,
but that is not a consideration here

1.600000E-001

1.600000E-001

1.400000E-001

M 1.200000E-001

« Significantly cuts down on the
construction time and cost

- 1.000000E-001

* More optimization in
geometry and construction
(next slides)

6.000000E-002

4.000000E-002

1.450322E-002
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Slotted Corrector Design

e Slot is machined in an aluminum tube (similar to ...
that done in RHIC and AGS helical magnets).

» Superconducting corrector wires are place in
the slot (details in other presentations).

» Horizontal and vertical correctors are placed in
the same radial location (saves on cost and on

the radial space) 45 degres

THunf2010 14:24:09

THunf2010 1421532

Right side of the
vertical corrector

October 20, 2010
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Fields of Many Short Correctors
Three Vertical correctors

» Seems to work OK

 Maximum ~10% drop between two corrector from a flat (peak) field
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Fields of Many Short Correctors

(TR
Two Horizontal and One Vertical
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Complex Configuration of Short Correctors

L 1]
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Case examined
e Vertical: VI8, V, V, V/2, V/4 of maximum 0.02 T
» Horizontal: -7/8H, -H, -H, +H, +3/4H of 0.02T

Actual error may not follow this physical pattern. e.g., there could be a change in sign in the
middle of a short corrector.

The error due to that could be much larger than the dip between two short correctors having
the same strength.

However, correction does not have to be perfect. As long as the net error is <50 micron, it
should be OK.
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Short and Long Correctors Together
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Exterior Field
Requirements
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Field between superconducting
and copper solenoid

* 0.3 T (3 kG) field is desired between copper solenoids and superconducting solenoid
along the beam path.

» This would be a very large fringe field in the axial direction. Removing or reducing the
radial width of the iron will generate some. However, that would also allow outside
components to create transverse field inside the solenoid and impact the field straightness.

» Copper solenoids are not able to generate that large field for the required spacing
between the components.

 This requirement is satisfied by inserting additional superconducting coils inside the
cryostat of the main superconducting solenoid. These coils create a large fringe field (and
hence named fringe field coil/solenoid). —
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Field between superconducting and copper
solenoid with superconducting solenoid at 6 T

vvvvvvvvvvvvv

* The desired field (>0.3 T between copper
solenoids and superconducting solenoid along |f s
the electron beam path) with a sufficiently

sized fringe field coil and main solenoid at 6 T
» The size and location of the fringe field coil is

optimized to minimize space usage
 Strong fringe field coils have a significant

impact on the field inside the main solenoid
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Field between superconducting and copper
solenoid with superconducting solenoid <6 T

« Situation becomes more complicated when the main solenoid is operated at a field
lower than 6 T — the desired range is field as low as 1 T.

* In this case the outside field becomes significantly smaller because (a) the leakage
field from the main solenoid becomes lower and (b) exterior field from the fringe field
coil also becomes lower if it scales with the main solenoid to maintain field quality.
 To obtain desired the desired (>0.3 T) field between copper solenoids and the
superconducting solenoid, the fringe field must run at full power.

 To obtain the required field quality, an additional coil (anti-fringe field coil) is added
and powered independently to adjusted field quality.
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Field Quality in Main Solenoid at 1T & 3T
with the desired fringe field (>0.3 T)

 To obtain the desired (>0.3 T) field between copper solenoids and the
superconducting solenoid, the fringe field must run at full power.

 To obtain the required field quality, the current in the anti-fringe field coll is adjusted.

« To minimize the amp-turn requirements, anti-fringe field coils have a nominal zero
current when the main solenoid is at 6 T.

» The current in anti-fringe coil must be negative at 3T (~-16 A) and even more at 1T
(~-33 A). These give the desired field quality (errors < 6 x 103 from z=-1050 to +1050).

UNITS UNITS
Length mm Length -mm
Flux density T 5 0E-03 Flux density T
5 0E-03 Field strength : Anr Field strength - Amr
Potential “Wb mr! Potential Wb m
Conductivity S m 4.0E-03 Conductivity -Sm
4.0E-03 Source density: Amm? Source density: Amm
H H Power W 3.0E-03 M | M d 1 T Power W
Main solenoid @3 T Main solenoi
Energy J 2 OE-03 Energy J
2.0E-03 Mass “kg Mass kg
1 0E-03 MODEL DATA 1.0E-03 MODEL DATA
O:\operalsc-solenoidite O-\operalsc-solenoidite
sti200-try5-3t-ccH3-sav 0.0 sti200-try5-1t-cc106-sa
0.0 e.st ve.st
Quadratic elements Quadratic elements
_1.0E-03 Axi-symmetry -1.0E-03 Axi-symmetry
R*vector potential R*vector potential
-2 0E-03 Magnetic fields -2.0E-03 Magnetic fields
Static solution Static solution
cale factor: 1.0 3 0E-03 Scale factor: 1.0
-3.0E-03 18204 elements - - 18204 elements
36901 nodes 36901 nodes
4 0E-03 19regions -4 0E-03 19 regions
-5.0E-03 -5.0E-03
R coord 00 00 00 00 00 00 00 00 00 00 00
Z coord 0.0  100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1000.0 zRgc?c?rrg 8 8 (1)000 0 go%.o go%.o 2000 0 gooo 0 8000 0 go%.o 800.0 900.0 ?0000.0
—Homogeneity of BMOD w.rt value 3.00776348932803 at (0.0,0.0) Homogeneity of BMOD w.rt. value 1.00267 123690837 at (0.0,0.0)
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Summary

» This is a demanding magnet system with both traditional and unique challenges.

The following key steps have been taken to meet the requirements:
» Corrector magnets are made superconducting to reduce size, stored energy
and Lorentz forces in the superconducting solenoid.
 Large axial forces in a relatively small end-section are contained by allowing
space for plates within the coil. The colil is wound continuously on either side of
the plate to avoid large asymmetric forces during the quench.
* A corrector design is developed that allows the same radial space to be
shared between horizontal and vertical correctors. This design also minimizes
cost and schedule conflict with other projects.
* Fringe field coll is added to obtain the large field (>0.3 T) desired between the
copper solenoids and the superconducting solenoid along the beam path.
« An additional (anti-)fringe field coil is incorporated to maintain the desired field
quality in main solenoid over a large range (1 Tto 6 T).

These design developments should help meet all requirements:
High field, large aperture, field uniformity, field straightness and fringe field.
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