X. ELECTRICAL RESISTIVITY of SOME METALLIC ELEMENTS and COMMERCIAL ALLOYS

CONTENTS

- A. Preface to the Electrical Resistivity of Metallic Elements
- B. Aluminum
- C. Beryllium
- D. Cobalt
- E. Copper
- F. Gold
- G. Indium
- H. Iron
- I. Lead
- J. Magnesium
- K. Molybdenum
- L. Nickel
- M. Niobium
- N. Platinum
- 0. Silver
- P. Tantalum
- Q. Tin
- R. Electrical Resistivity of Some Commercial Alloys at Low Temperatures
- S. Advance
- T. Chromel A
- U. Cupron
- V. Evanohm
- W. Manganin
- X. Nilstain (SS type 304)
- Y. Trophet A
- Z. Stainless Steel

PREFACE to the ELECTRICAL RESISTIVITY of METALLIC ELEMENTS

The electrical resistivities of pure, or nearly pure, metallic elements are presented here as a function of temperature for the range from 1 to 300° K. These metallic elements include only those that exhibit an increase in resistivity with increasing temperature. These values of resistivity are presented as ratios, ρ/ρ_{273} , that is, the resistivity divided by the value of the resistivity at 273.15°K. The resistivity may then be determined as a product of the ratio and the value of ρ_{273} listed on the graph sheet for each metal. Each graph is for a separate metal and generally includes the values reported by several investigators. The several sources of data are listed on the data sheet and the individual curves on the graph are referenced by the author's name.

The several data sources used in this compilation reported the values of electrical resistivity in several forms, such as specific resistivity ρ , or values of resistivity ratio, $\rho/\rho_{\rm T}$, where the datum temperature T, is not consistent from one reference to another. Often the value of resistivity for the datum temperature used in the resistivity ratio is not available. In this compilation, where the original data are values of resistivity, a common value of ρ_{273} is used in the calculation of the ratio. Where the original data are values of resistivity ratios, the value of ρ_{273} indicated on the graph sheet for calculation of resistivity is either the value of ρ_{273} from the original data in those instances where it was given, or the most probable value of ρ_{273} from another source when it is not available from the original experimenters. Where the original data are resistivity ratios, $\rho/\rho_{\rm T}$, and T is not 273°K, a suitable correction has been used to convert the ratio to ρ/ρ_{273} .

Comments on sample purity, accuracy of the tabulated data and other pertinent information reported in the source of data are included in the comments for each data sheet. Some of the references list interpolated values between experimental data points. Where these interpolated values have been used in the construction of the graphs, the interpolated values are also listed in the tables of values and so indicated in a footnote.

The graphs of the electrical resistivity ratios are presented on linear, semi-log or logarithmic coordinates as necessary for satisfactory representation of the data. The use of logarithmic coordinates serves to emphasize the differences in the values reported by the several experimenters at low temperatures. This variation may be attributed primarily to differences in the purity of the sample measured or in some cases to the use of a sample with residual mechanical strains that were not relieved by annealing.

The graphs also serve to illustrate Matthiessen's rule that the increase of resistance in pure metals due to imperfections in the crystal lattice structure is independent of temperature. The resistivity of these nearly pure metals may thus be separated into two independent parts,

 $\rho = \rho_1 + \rho_0$

where ρ_i is the intrinsic resistivity (the electron-lattice interaction) and

PREFACE to the ELECTRICAL RESISTIVITY of METALLIC ELEMENTS (Cont.)

is a function of temperature, and ρ_0 is the imperfection resistivity (the electron-imperfection interaction) and is dependent on the type and concentration of the imperfections and is almost independent of temperature. The imperfections are either chemical impurities, isotopes, or mechanical imperfections such as vacancies, dislocations, etc., in the lattice structure. The effect of impurities is then to shift the curve uniformly upward. At very low temperatures ρ_0 is much greater than ρ_i so that temperature change has little effect on the resistivity, while at high temperatures $\rho_{\mathbf{i}}$ is much greater than $\rho_{\mathbf{0}},$ so that the differences in resistivity for various samples becomes relatively insignificant. The graphs on linear coordinates illustrates the above for those metals where alternate data sources are represented in a temperature range where ρ_0 is much less than ρ_1 and is evidenced by a constant vertical displacement of the data. Several theoretical and empirical equations have been proposed for the ideal resistivity as a function of temperature, but no general law, valid for all conductors, has come forward. The intrinsic electrical resistivity of most simple metals at intermediate temperatures however, may be adequately represented by an empirical equation of the form $\rho_i = aT^D$, where b varies from 4 to 5. This is further indicated on these data sheets, where a straight line may be used on the logarithmic coordinates to represent the data for large intervals of temperature.

When considering the resistivity of the metallic elements at low temperatures, the phenomenon of superconductivity should also be noted. Superconductivity is attributed to the complete absence of resistance to an electric current. Twenty-three metallic elements are presently known to exhibit superconductivity at various temperatures below 12°K.

This graphical presentation of the electrical resistivity of the superconducting elements does not include data in the superconducting temperature range. An exception is the data sheet for lead, where electrical resistivity data extending into the superconducting region appeared in the reference and were included in this compilation. These data below the transition temperature were based on actual observations of electrical resistance in lead in a super critical magnetic field at temperatures which would normally make lead a superconductor.

As in the case of lead, elements in the superconducting state when subjected to an external magnetic field of a given strength, will regain normal resistance to an electric current. The strength of this critical magnetic field depends on the element concerned and temperature. This relationship may be approximated by:

$$H_{c} = H_{o} \left[1 - (T/T_{c})^{2} \right]$$

where H_0 is the value of the critical magnetic field (in oersteds) at 0°K, T_c is the transition temperature (in °K) and H_c is the value of the critical field at a temperature T. Values for T_c and H_0 are given in Table 2.

PREFACE to the ELECTRICAL RESISTIVITY of METALLIC ELEMENTS (Cont.)

m-1- 1	-	а.
1.80 T	e	1
	-	_

Conversion Factors for Electrical Resistivity

ρ	ohm-cm	ohm-in	ohm-cir mil/ft
l ohm-cm =	1.000	0.3937	6.015 x 10 ⁶
l ohm-in =	2.540	1.000	1.528 x 10 ⁷
l ohm-cir mil/ft =	1.662 x 10 ⁻⁷	6.545 x 10 ⁻⁸	1.000

Transition Temperatures for Superconducting Elements *

Element	Transition Temp., °K	Critical Magnetic Field Ho, Oersteds
Aluminum	1.175	106
Cadmium	0.56 - 0.65	27 - 28.8
Gallium	1.103	47 - 50.3
Hafnium	0.37	
Mercury	4.160	400 - 419
Indium	3.374 - 3.432	269 - 275
Lanthanum	4.8, 5.8	
Niobium	8.7 - 8.9	1960
Osmium	0.71	65
Lead	7.22	800
Rhenium	1.70	188
Rhodium	0.9	
Ruthenium	0.47	46
Tin	3.74	304 - 310
Tantalum	4.38	860
Technetium	11.2	
Thorium	1.388 - 1.40	131
Titanium	Q.39	100
Thallium	2.392	171
Uranium	1.1	*
Vanadium	4.89	1340
Zinc	0.93	42 - 52.5
Zirconium	0.55	46.6

* American Institute of Physics Handbook, McGraw-Hill Book Co. Inc., New York (1957) Sec. 4, P. 49

Reprinted from WADD TECH.REPORT 60-56

ELECTRICAL RESISTIVITY of ALUMINUM, AL

(Atomic Number 13)

Sources of Data:

Landolt-Börnstein Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, sechste Auflage, II Band, 6 Teil, Springer-Verlag, Berlin (1959) pp. 1-46

International Critical Tables of Numerical Data, Physics, Chemistry, and Technology, VI, 1st Edition, Published for the National Research Council by the McGraw-Hill Book Co. Inc. (1929) pp. 124-135

Other References:

Albert, P., Bull. inst. intern. froid, Annexe <u>1956-2</u>, 41-49 (1956)
Alley, P. and Serin, B.; Phys. Rev. <u>116</u>, No. 2, 334-338 (1959)
Boorse, H. A. and Niewodniczanski, H., Proc. Roy. Soc. (Loncon) <u>A153</u>, 463-475 (1936)
Caron, M., Bull. inst. intern froid, Annexe <u>1956-2</u>, 51-62 (1956)
Caron, M., Compt. rend. <u>236</u>, 1169 (1953)
Caron, M., Albert, P. and Chaudron, G., Compt. rend. <u>236</u>, 686-688 (1954)
Chaudron, G., Nature <u>174</u>, 923 (1954)
Grüneisen, E. and Goens, E.; Z. Physik. <u>44</u>, 615 (1927)
Holborn, L.; Z. Instrumentenk. <u>22</u>, 114 (1902)
Holborn, L.; Ann. Physik. <u>59</u>, 145 (1919)
Justi, F. and Scheffers, H.; Physik. Z. <u>39</u>, 105 (1938)
Meissner, W. and Voigt, B.; Ann. Physik. (5) <u>7</u>, 761, 892 (1930)
Thomas, J. G. and Mendoza, E.; Fhil. Mag. (7) 43, 900 (1952)

Comments:

Reference should be made to the preface at the beginning of the Electrical Resistivity section for an explanation of the graph. The value of electrical resistivity at 273°K (ρ_{273}) for aluminum to be used in calculating values of electrical resistivity (ρ_T) is listed below the authors' names labeling each individual curve on the graph. These curves should not be extrapolated to lower temperatures since aluminum becomes superconducting at 1.175°K.

The data for this graph were taken from the references cited above under "Sources of Data". The values listed in the Landolt-Börnstein tables are those reported by Grüneisen and Goens; Holborn (1919); Justi and Scheffers; Meissner and Voigt; and Thomas and Mendoza, while those values listed by the International Critical Tables are from Holborn (1902 and 1919). These primary sources are listed above under "Other References". The original authors are used in labeling the several curves on the graph.

ELECTRICAL RESISTIVITY of ALUMINUM, (Cont.)

Comments: (cont.)

The data reported in the Landolt-Börnstein tables, the International Critical Tables and tabulated here are listed as ratios of electrical resistivity with respect to the resistivity at a datum temperature of 273°K. The value of ρ_{273} to be used with the Holborn data in calculating values of electrical resistivity is $\rho_{273} = 2.53 \times 10^{-6}$ ohm-cm. The actual values of ρ_{273} are not available for the samples used by the other investigators so a datum value reported by Grüneisen and Goens ($\rho_{273} = 2.50 \times 10^{-6}$ ohm-cm) is suggested for calculating values of electrical remaining ratios.

The samples used by Holborn are reported in Landolt-Börnstein as polycrystalline with 0.4% impurities of unknown composition. The Holborn sample was annealed at 250°C. Grüneisen and Goens are reported to have used a polycrystalline sample with a small amount of impurities present. The sample used by Meissner and Voigt is reported as an annealed polycrystalline sample with undetermined impurities.

A single crystal with a small amount of impurities present is reported as the sample used by Justi and Scheffers. The sample used by Thomas and Mendoza was an annealed polycrystalline sample with 0.005% impurities of unknown composition. No other pertinent information was presented about any of the samples from any of the sources of data.

Tables of Values of Electrical Resistivity

$\rho \approx \text{Resistivity}, (\text{ohm-cm})$

 $\rho_{273} = \text{Resistivity at 273°K}, (ohm-cm)$

Holborn					
Temp. °C	100p/p ₂₇₃	Temp. °C	- 100p/p ₂₇₃	Temp. °C	100p/p ₂₇₃
- 78.3* - 80 -100 -120	64.80* 64.1 55.2 46.4	-140 -160 -180 -191.9* -192.9*	37.7 28.9 20.2 14.85* 14.49*	-200 -220 -240 -253*	12.0 7.1 4.9 4.27*
* Observed values. All other values have been interpolated.					

Justi and	Scheffers	Meissner and Voigt		Thomas and Mendoza	
Temp. °K	ρ/ρ ₂₇₃	Temp.* °K	p/p ₂₇₃	Temp. °K	р/р ₂₇₃
14 20	0.0014 0.0018	1.35 4.21 20.44 77.7	0.0067 0.0065 0.0075 0.1008	Ц.	0.0026
* The second decimal place of the temperature values is somewhat in doubt.					

Reprinted from WADD TECH. REPORT 60-56

ELECTRICAL RESISTIVITY VERSUS TEMPERATURE FOR ALUMINUM ALLOY 1100-0

ELECTRICAL RESISITIVITY of BERYLLIUM, Be

(Atomic Number 4)

Source of Data:

Landolt-Börnstein Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, sechste Auflage, II Band, 6 Teil, Springer-Verlag, Berlin (1959) pp. 1-46

Other References:

Lewis, E. J.; Phys. Rev. 34, 1575 (1929)

Mac Donald, D. K. C. and Mendelssohn, K.; Proc. Roy. Soc. (London) <u>A202</u>, 523 (1950)

Meissner, W. and Voigt, B.; Ann. Physik (5) <u>7</u>, 761, 892 (1930) Powell, R. W.; Phil. Mag. 44, 645 (1953)

Comments:

Reference should be made to the preface at the beginning of the Electrical Resistivity section for an explanation of the graph. The value of electrical resistivity at 273°K (ρ_{273}) for beryllium to be used in calculating values of electrical resistivity (ρ_T) is 3.2 x 10⁻⁶ ohm-cm.

The data for this graph were taken from the reference cited above under "Source of Data". The values taken from Landolt-Börnstein tables are those reported by the authors listed above under "Other References". The original authors are used in labeling the three curves on the graph.

The data reported in Landolt-Börnstein and tabulated here are listed as ratios of electrical resistivity with respect to the resistivity at a datum temperature of 273°K. The actual value of ρ_{273} is not available for the several authors' data appearing on the graph so a datum value reported by R. W. Powell ($\rho_{273} = 3.2 \times 10^{-6}$ ohm-cm) is suggested for calculating values of resistivity from these ratios. Powell reports 0.4% impurities of unknown composition in the polycrystalline sample used in determining ρ_{273} .

The Landolt-Börnstein tables list the samples used by all of the authors as being of the polycrystalline type. No mention of impurities is made for the samples used by MacDonald and Mendelssohn; and Lewis. The sample used by Meissner and Voigt is reported to have had 2% Fe and 0.5% Bi impurities present. No mention is made of the mechanical or heat treatment of any of the samples.

ELECTRICAL RESISTIVITY of BERYLLIUM (Cont.)

Tables of Values of Electrical Resistivity

 ρ = Resistivity, (ohm-cm) ρ_{273} = Resistivity at 273°K, (ohm-cm)

Lew	is	MacDon Mende	nald and elssohn
Temp• °K	р/р ₂₇₃	Temp. °K	р/р * 290
84.2 196.2 294.2	0.273 0.586 1.174	4.2 20.4 90.0	0.276 0.276 0.322

Meissner and Voigt		
Temp.** °K	٥/٩ ₂₇₃	
1.35 2.38 4.22 20.44 81.7	0.3077 0.3075 0.3075 0.3075 0.3075 0.3229	

* The third decimal place of the resistivity values is somewhat in doubt.

** The second decimal place of the temperature values is somewhat in doubt.

Reprinted from WADD TECH.REPORT 60-56

X-C-3

ELECTRICAL RESISTIVITY of COBALT, Co (Atomic Number 27)

Sources of Data:

International Critical Tables of Numerical Data, Physics, Chemistry, and Technology, VI, 1st Edition, Published for the National Research Council by the McGraw-Hill Book Co. Inc. (1929) pp. 124-135

Landolt-Börnstein Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, sechste Auflage, II Band, 6 Teil, Springer-Verlag, Berlin (1959) pp. 1-46

Other References:

Bridgman, P. W.; Proc. Am. Acad. Arts. Sci. <u>79</u>, 149 (1940) Meissner, W. and Voigt, B.; Ann. Physik (5) <u>7</u>, 761, 892 (1930) Schimank, H.; Ann. Physik 45, 706 (1914)

Comments:

Reference should be made to the preface at the beginning of the Electrical Resistivity section for an explanation of the graph. The value of electrical resistivity at 273°K (ρ_{273}) for cobalt to be used in calculating values of electrical resistivity (ρ_T) is 5.57 x 10⁻⁶ ohm-cm.

The data for this graph were taken from the references cited above under "Sources of Data". The values listed in the Landolt-Börnstein tables are those reported by Meissner and Voigt; and Bridgman; while those values appearing in the International Critical Tables are from Schimank. These primary sources are cited above under "Other References". The original authors are used in labeling the two curves on the graph.

The data in Landolt-Börnstein tables; the International Critical Tables and tabulated here are listed as ratios of electrical resistivity with respect to the resistivity at a datum temperature of 273°K. The actual values of ρ_{273} for the samples used by the several investigators are not available so a datum value reported by Bridgman ($\rho_{273} = 5.57 \times 10^{-6}$ ohm-cm) is suggested for calculating values of electrical resistivity from these ratios.

The Landolt-Börnstein tables list the sample used by Meissner and Voigt as an annealed, sintered polycrystalline specimen with no mention made of impurities present. The sample used by Bridgman was reported as polycrystalline with a very small amount of impurities. No information is given on the amount of impurity or nature of the Schimank sample, and no further information is available on the mechanical strain or heat treatment for any of the samples from any of the sources of data.

ELECTRICAL RESISTIVITY of COBALT (Cont.)

Tables of Values of Electrical Resistivity

 ρ = Resistivity, (ohm-cm)

 ρ_{273} = Resistivity at 273°K, (ohm-cm)

Meissner and Voigt		
Temp. °K ρ/ρ ₂₇₃		
1.5 4.2 20.4 77.8 .86.9	0.0431 0.0426 0.0463 0.1516 0.1829	

Schimank		
Temp. °C	100p/p ₂₇₃	
- 80* -100* -120* -160* -180* -192	57.4 48.2 32.3 24.8 17.4 13.5	
*Values from interpolation		

Reprinted from WADD TECH.REPORT 60-56

X-D-3

 \sim

ELECTRICAL RESISTIVITY of COPPER, Cu

(Atomic Number 29)

Sources of Data:

International Critical Tables of Numerical Data, Physics, Chemistry, and Technology, VI, 1st Edition, Published for the National Research Council by the McGraw-Hill Book Co. Inc. (1929) pp 124-135

Landolt-Börnstein Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, sechste Auflage, II Band, 6 Teil, Springer-Verlag, Berlin (1959) pp 1-46

Other References:

de Haas, W. J. de Boer, J. H. and Van den Berg, G. J.; Physica II, 1115 (1934)

Henning, F.; Z. Physik. <u>5</u>, 264 (1921)

Holborn, L.; Ann. Physik 59, 145 (1919)

Meissner, W.; Ann. Physik (4) 47, 1001 (1915)

Meissner, W.; Physik. Z. 29, 897 (1928)

Comments:

Reference should be made to the preface at the beginning of the Electrical Resistivity section for an explanation of the graph. The value of electrical resistivity at 273°K (ρ_{273}) for copper to be used in calculating values of electrical resistivity ($\rho_{\rm T}$) is 1.55 x 10⁻⁶ ohm-cm.

The data for this graph were taken from the references cited above under "Sources of Data". The values listed in the Landolt-Börnstein tables are those reported by de Haas, de Boer and Van den Berg; Holborn; and Meissner; while those values appearing in the International Critical Tables are from Henning. These primary sources are listed above under "Other References". The original authors are used in labeling the curves on the graph.

The data in the Landolt-Börnstein tables, the International Critical Tables and tabulated here are listed as ratios of electrical resistivity with respect to the resistivity at a datum temperature of 273°K. The actual values of ρ_{273} for the samples used by the original investigators are not available so a datum value determined by Meissner in 1915 ($\rho_{273} = 1.55 \times 10^{-6}$ ohm-cm) is suggested for calculating values of electrical resistivity from these ratios.

The Landolt-Börnstein tables report the samples used by the authors appearing in their compilation as annealed polycrystalline specimens with a small amount of impurities present. No other pertinent information is given about any of the samples in any of the sources of data.

ELECTRICAL RESISTIVITY of COPPER (Cont.)

Tables of Values of Electrical Resistivity

 ρ = Resistivity, (ohm-cm) ρ_{273} = Resistivity at 273 °K, (ohm-cm)

de Haas, de Boer and Van den Berg		Henning	
Temp. °K	р/р ₂₇₃	Temp. °C	100p/p ₂₇₃
1.55 4.23 14.26 20.47	0.00117 0.00119 0.00128 0.00176	- 76 -183 -252.8	65.739 18.868 0.6291

Но	Holborn		ssner	
Temp. °K	p/p ₂₇₃	Temp.* °K	٩/٩ ₂₇₃ **	
81 195	0.1502 0.6602	1.32 1.97 4.20 20.42 81.6	0.00029 0.00028 0.00029 0.00078 0.144	
* The second decimal place of the temperature values is somewhat in doubt.				
**The fifth decimal place of the electrical resistivity ratio values is somewhat in doubt.				

Reprinted from WADD TECH.REPORT 60-56

. 1

ł

ELECTRICAL RESISTIVITY VERSUS TEMPERATURE FOR COPPER

TRANSVERSE MAGNETORESISTANCE OF COPPER AT 1 TESLA

X-E-7

TRANSVERSE MAGNETORESISTANCE OF COPPER AT 10 TESLA

This Page Left Intentionally Blank.

X-E-10

X-E-11

This Page Left Intentionally Blank.

This Page Left Intentionally Blank.

,

ELECTRICAL RESISTIVITY of GOLD, Au

(Atomic Number 79)

Sources of Data:

International Critical Tables of Numerical Data, Physics, Chemistry, and Technology, VI, 1st Edition, Published for the National Research Council by the McGraw-Hill Book Co. Inc. (1929) pp 124-135

Landolt-Börnstein Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, sechste Auflage, II Band, 6 Teil, Springer-Verlag, Berlin (1959) pp 1-46

Other References:

Cath, P. G., Onnes, H. K. and Burgers, W. G.; Proc. Acad. Sci. Amsterdam 20, 1163 (1918)

Holborn, L.; Ann. Physik 59, 145 (1919)

Justi, E.; Physik. 2. 41, 486 (1940)

Meissner, W.; Ann. Physik (4) 47, 1001 (1915)

Meissner, W.; Physik. Z. 27, 725 (1926)

Comments:

Reference should be made to the preface at the beginning of the Electrical Resistivity section for an explanation of the graph. The value of electrical resistivity at 273°K (ρ_{273}) for gold to be used in calculating values of electrical resistivity (ρ_T) is 2.06 x 10⁻⁶ ohm-cm.

The data for this graph were taken from the references cited above under "Sources of Data". The values listed in the Landolt-Börnstein tables are those reported by Holborn; Justi; and Meissner; while the values appearing in the International Critical Tables are those from Cath, Onnes and Burgers. These primary sources are listed above under "Other References". The original authors are used in labeling the curves on the graph.

The data in the Landolt-Börnstein tables, the International Critical Tables and tabulated here are listed as ratios of electrical resistivity with respect to the resistivity at a datum temperature of 273°K. The actual values of ρ_{273} are not available for the samples used by the several investigators so a datum value reported by Meissner in 1915 ($\rho_{273} = 2.06 \times 10^{-6}$ ohm-cm) is suggested for calculating values of electrical resistivity from these ratios.

The Landolt-Börnstein tables report the samples used by Meissner are polycrystalline with less than 0.001% impurities present. The sample used by Meissner in the 1915 reference was a cast sample; while the sample he used in the 1926 reference was aged. The samples used by Holborn and Justi are reported as annealed polycrystalline with a small amount of impurities present. No other pertinent information is given about any of the samples in any of the sources of data.

ELECTRICAL RESISTIVITY of GOLD (Cont.)

Tables of Values of Electrical Resistivity

 ρ = Resistivity, (ohm-cm)

 ρ_{273} = Resistivity at 273°K, (ohm-cm)

Cath, Onnes and Burgers					
Temp. °C	100p/p ₂₇₃	Temp. °C	100p/p ₂₇₃	Temp. °C	100p/p ₂₇₃
- 84.97 -102.22 -130.28 -145.86 -164.37 -183.95 -195.88 -205.31	66.443 59.628 48.507 42.273 34.764 26.660 21.622 17.596	-208.18 -216.26 -222.78 -228.73 -233.62 -236.62 -240.25	16.365 12.906 10.130 7.680 5.804 4.667 3.538	-243.68 -245.80 -252.57 -255.01 -258.35 -268.88 -269.57 -271.61	2.553 2.039 0.845 0.594 0.379 0.223 0.223 0.223

Holl	oorn	Meissner		Justi	
Temp. °K	р/р ₂₇₃	Temp. °K	p/p ₂₇₃	Temp. °K	p/p ₂₇₃
81 195	0.2375 0.6995	1.6 4.2 20.4 81.7 84.9	0.00109 0.00109 0.00707 0.2341 0.2480	4.2 14.0 20.4 79	0.00085 0.00227 0.00709 0.219

Reprinted from WADD TECH. REPORT 60-56

ELECTRICAL RESISTIVITY of INDIUM, In (Atomic Number 49)

Sources of Data:

International Critical Tables of Numerical Data, Physics, Chemistry, and Technology, VI, 1st Edition, Published for the National Research Council by the McGraw-Hill Book Co. Inc. (1929) pp. 124-135

Landolt-Börnstein Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, sechste Auflage, II Band, 6 Teil, Springer-Verlag, Berlin (1959) pp. 1-46

Other References:

Meissner, W.; Franz, H. and Westerhoff, H.; Ann. Physik (5) <u>13</u>, 555 (1932) Meissner, W.; Franz, H. and Westerhoff, H.; Ann. Physik (5) <u>13</u>, 505 (1932) Meissner, W. and Voigt, B.; Ann. Physik (5) <u>7</u>, 761, 892 (1930) Tuyn, W. and Onnes, K. H.; Proc. Acad. Sci. Amsterdam <u>26</u>, 504 (1923)

Comments:

Reference should be made to the preface at the beginning of the Electrical Resistivity section for an explanation of the graph. The value of electrical resistivity at 273°K (ρ_{273}) for indium to be used in calculating values of electrical resistivity (ρ_T) is 8.19 x 10⁻⁶ ohm-cm. The curves should not be extrapolated to lower temperatures since indium becomes a superconductor between 3.374 and 3.432°K.

The data for this graph were taken from the references cited above under "Sources of Data". The values listed in the Landolt-Börnstein tables are those reported by Meissner, Franz and Westerhoff; and Meissner and Voigt; while those values appearing in the International Critical Tables are from Tuyn and Onnes. These primary sources are listed above under "Other References". The original authors are used in labeling the three curves on the graph.

The data in the Landolt-Börnstein tables, the International Critical Tables and tabulated here are listed as ratios of electrical resistivity with respect to the resistivity at a datum temperature of 273°K. The actual values of ρ_{273} were not available for the samples used by Meissner and Voigt; and Tuyn and Onnes so a datum value reported by Meissner, Franz and Westerhoff ($\rho_{273} = 8.19 \times 10^{-6}$ ohm-cm) is suggested for calculating values of electrical resistivity from these ratios.

Comments: (cont.)

The Landolt-Börnstein tables list the samples of both references ε polycrystalline with 0.1% impurities in the sample used by Meissne and Voigt and a very small amount of impurity in the samples used by Meissner, Franz and Westerhoff. No mention is made of the amount of impurities in the sample used by Tuyn and Onnes, and no information was given on the mechanical strain or heat treatment for any of the samples from any of the authors.

Tables	of	Values	of	Electrical	Resistivity
--------	----	--------	----	------------	-------------

 ρ = Resistivity, (ohm-cm)

^ρ 273	=	Resistivity	at	273°K,	(ohm-cm))
------------------	---	-------------	----	--------	----------	---

Meissner	and Voigt	Meissne and We	er, Franz sterhoff
Temp. °K	P/P ₂₇₃	Temp. °K	р/р ₂₇₃
4.21 20.5 77.8 88.9	0.0038 0.0256 0.2177 0.2567	4.23 20.4 77.8	0.0015 0.0216 0.212

Tuyn and Onnes				
Temp. °C	100p/p ₂₇₃	Temp. °C	100p/p ₂₇₃	
-182.79	28.75	-254.95	5.173	
-194.06	24.92	-256.61	4.796	
-202.07	22.20	-258.89	4.317	
-209.98	19.52	-268.87	3•394	
-218.30	16.71	-269.49	3•392	
-252.65	5.739	-269.61	3•387	

Reprinted from WADD TECH.REPORT 60-56

X-G-3

ELECTRICAL RESISTIVITY of IRON, Fe (Atomic Number 26)

Sources of Data:

International Critical Tables of Numerical Data, Physics, Chemistry, and Technology, VI, 1st Edition, Published for the National Research Council by the McGraw-Hill Book Co. Inc. (1929) pp 124-135

Landolt-Börnstein Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, sechste Auflage, II Band, 6 Teil, Springer-Verlag, Berlin (1959) pp 1-46

Other References:

Cleaves, H. E. and Hiegel, J. M.; J. Research Natl. Bur. Standards RP 1472 28, 643 (1942)

Holborn, L.; Ann. Physik 59, 145 (1919)

Meissner, W.; Physik. Z. 29, 897 (1928)

Comments:

Reference should be made to the preface at the beginning of the Electrical Resistivity section for an explanation of the graph. The value of electrical resistivity at 273°K (ρ_{273}) for iron to be used in calculating values of electrical resistivity (ρ_{m}) is 8.6 x 10⁻⁶ ohm-cm.

The data for this graph were taken from the references cited above under "Sources of Data". The values listed in the Landolt-Börnstein tables are those reported by Meissner; and Cleaves and Hiegel; while those values appearing in the International Critical Tables are from Holborn. These primary sources are cited above under "Other References". The original authors are used in labeling the two curves on the graph.

The data in the Landolt-Börnstein tables, the International Critical Tables and tabulated here are listed as ratios of electrical resistivity with respect to the resistivity at a datum temperature of 273°K. The actual values of ρ_{273} for the samples used by the several investigators are not available so a datum value reported by Cleaves and Hiegel ($\rho_{273} = 8.6 \times 10^{-6}$ ohm-cm) is suggested for calculating values of electrical resistivity from these ratios.

The Landolt-Börnstein tables list the sample used by Cleaves and Hiegel as an annealed polycrystalline specimen with less than 0.01% impurities. The sample used by Meissner is reported as an annealed polycrystalline specimen with a very small amount of impurities present. No other pertinent information is given on any of the samples in any of the sources of data.

ELECTRICAL RESISTIVITY of IRON (Cont.)

Tables of Values of Electrical Resistivity

 ρ = Resistivity, (ohm-cm)

 ρ_{273} = Resistivity at 273°K, (ohm-cm)

Holborn				
Temp. °C	100p/p ₂₇₃	Temp. °C	100p/p ₂₇₃	
- 78.1 - 80 * -100 *	57.86 65.9 47.3	-192.7 -200 * -220 *	8.48 6.2 2.7	
-120 * -140 * -160 *	38.1 29.2 20.7	-240 * -253	1.4 1.13	
* Values from interpolation				

Mei	ssner	
Temp.* °K	р/р _{273**}	
1.980.0006184.210.00062020.40.00076178.20.0741		
* The second decimal place is in doubt.		
**The fifth is in dou	decimal place	

Reprinted from WADD TECH. REPORT 60-56

Х-н-3

(Atomic Number 82)

Source of Data:

Landolt-Börnstein Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, sechste Auflage, II Band, 6 Teil, Springer-Berlag, Berlin (1959) pp. 1-46

Other References:

Jaeger, W. and Diesselhorst, H.; Wiss. Abhandl. physik. tech. Reichsanstalt <u>3</u>, 269 (1900)

Meissner, W. and Franz, H.; Z. Physik. 65, 30 (1930)

Meissner, W.; Ann. Physik. (5) 13, 641 (1932)

Onnes, H. K. and Tuyn, W.; Communs. Kamerlingh Onnes Lab. Univ. Leiden Suppl. No. 58 (1926)

Van den Berg, G. J.; Physica 14, 111 (1948)

Comments:

Reference should be made to the preface at the beginning of the Electrical Resistivity section for an explanation of the graph. The value of electrical resistivity at 273°K (ρ_{273}) for lead to be used in calculating values of electrical resistivity (ρ_T) is 19.2 x 10⁻⁶ ohm-cm. The curves on the graph should not be extrapolated to lower temperatures as lead becomes a superconductor at 7.22°K.

It will be noted, however, that the data of Van den Berg extend into the superconducting region. These data below the transition temperature were based on observations of the electrical resistance with the lead subjected to a super critical magnetic field to maintain electrical resistance.

The data for this graph were taken from the reference cited above under "Source of Data". The data listed in the Landolt-Börnstein tables are those reported by the authors listed above under "Other References". The original authors are used in labeling the curves on the graph.

The data reported in Landolt-Börnstein and tabulated here are listed as ratios of electrical resistivity with respect to the resistivity at a datum temperature of 273°K. The actual values of ρ_{273} are not available for the samples used by the original investigators so a datum value reported by Jaeger and Diesselhorst ($\rho_{273} = 19.2 \times 10^{-6}$ ohm-cm) is suggested for calculating values of electrical resistivity from these ratios. Jaeger and Diesselhorst report the sample used in determining ρ_{273} as polycrystalline with less than 0.05% impurities.

The Landolt-Börnstein tables report the samples used by all of the investigators as polycrystalline with a very small amount of impurities present. No other pertinent information is given about any of the samples used by any of the investigators.

ELECTRICAL RESISTIVITY of LEAD (Cont.)

Tables of Values of Electrical Resistivity

 ρ = Resistivity, (ohm-cm)

ρ ₂₇₃	Ξ	Resistivity	at	273°K,	(ohm-cm)
215					

Meissner	and Franz	Meissner		
Temp.* °K	p/p ₂₇₃	Temp. °K	p/p ₂₇₃	
7.26 14.02 20.32	0.0007 0.0104 0.0292	1.3 4.2	1.55 x 10 ⁻⁴ + 1.75 x 10 ⁻⁴ +	

Onnes and Tuyn		Van den Berg	
Temp.* °K	р/р ₂₇₃	Temp.* °K	٩/٩ ₂₇₃ ***
7.26 14.32 20.52 73.11	0.0010 0.0113 0.0301 0.2321	2.30 3.22 4.24 7.22	0.00013+ 0.00015+ 0.00019+ 0.00083
88.56	0.2895	9.38 20.32	0.0025 0.0301

* The second decimal place of the temperature values is somewhat in doubt.

- ** The fifth decimal place of the electrical resistivity ratio values is somewhat in doubt.
 - + These measurements were made with the aid of a supercritical magnetic field at temperatures at which lead is normally a superconductor. (For a more detailed explanation see the preface of the electrical resistivity section.)

Reprinted from WADD TECH. REPORT 60-56

X-I-3

ELECTRICAL RESISTIVITY of MAGNESIUM, Mg

(Atomic Number 12)

Sources of Data:

Landolt-Börnstein Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, sechste Auflage, II Band, 6 Teil, Springer-Verlag, Berlin (1959) pp. 1-46

International Critical Tables of Numerical Data, Physics, Chemistry, and Technology, VI, 1st Edition, Published for the National Research Council by the McGraw-Hill Book Co. Inc. (1929) pp. 124-135

Other References:

Dewar, J. and Fleming, J. A.; Phil. Mag. (5) <u>36</u>, 271 (1893) Meissner, W. and Voigt, B.; Ann. Physik (5) <u>7</u>, 761, 892 (1930) Niccolai, G.; Physik. Z. <u>9</u>, 367 (1908) Rosenberg, H. M.; Phil. Mag. <u>45</u>, 73 (1954) Yntema, G. B.; Phys. Rev. <u>91</u>, 1388 (1953)

Comments:

Reference should be made to the preface at the beginning of the Electrical Resistivity section for an explanation of the graph. The value of electrical resistivity at 273°K (ρ_{273}) for magnesium to be used in calculating values of electrical resistivity (ρ_T) is 4.31 x 10⁻⁶ ohm-cm.

The data for this graph were taken from the references cited above under "Sources of Data". The values listed in the Landolt-Börnstein tables are those reported by Meissner and Voigt; Niccolai; Rosenberg; and Yntema; while those values listed by the International Critical Tables are from Dewar and Fleming. Those primary sources are listed above under "Other References". The original authors are used in labeling the curves on the graph.

The data reported in the Landolt-Börnstein tables, the International Critical Tables, and tabulated here are listed as ratios of electrical resistivity with respect to the resistivity at a datum temperature of 273°K. The actual values of ρ_{273} are not available for the samples used by the several investigators so a datum value reported by Niccolai ($\rho_{273} = 4.31 \times 10^{-6}$ ohm-cm) is suggested for calculating values of electrical resistivity from these ratios.

The sample used by Meissner and Voigt is reported by Landolt-Börnstein as polycrystalline and annealed in a vacuum at 250°C. The sample used by Yntema was of a polycrystalline nature with less than 0.02% impurities present. The Yntema sample was also annealed but no mention is made of conditions. The samples used by Rosenberg and Niccolai are reported as polycrystalline with very few impurities present. No other pertinent information was given about any of the samples used by any of the authors.

ELECTRICAL RESISTIVITY of MAGNESIUM (Cont.)

Tables of Values of Electrical Resistivity

 ρ = Resistivity, (ohm-cm)

 ρ_{273} = Resistivity at 273°K (ohm-cm)

Meissner	and Voigt	Rosenberg			
Temp.* °K	p/p ₂₇₃	Temp. °K	٩/٩ ₂₇₃ **		
1.27 3.16 4.20	0.0329 0.0326 0.0323	2.5 5 10	0.00630 0.00623 0.00632		
20.46 77.6 88.2	0.0344 0.1576 0.2006	15 25	0.0068 0.0096		
* The second decimal place is in doubt.					
** The	** The fifth decimal place is in doubt.				

Yntema		Dewar and Fleming	
Temp. °K	ρ/ρ ₂₇₃	Temp. °C	100p/p ₂₇₃
1.30 4.21	0.00537 0.00516	- 78.3* - 80 -100 -120 -140 -160 -180 -182.9*	68.2* 67.4 59.0 50.5 41.9 33.2 24.4 23.0*
* Results of actual observations. All other values from interpolations.			

Reprinted from WADD TECH. REPORT 60-56

X-J-2

X-J-3

ELECTRICAL RESISTIVITY of MOLYBDENUM, MO

(Atomic Number 42)

Sources of Data:

International Critical Tables of Numerical Data, Physics, Chemistry, and Technology, VI, 1st Edition, Published for the National Research Council by the McGraw-Hill Book Co., Inc. (1929) pp. 124-135

Landolt-Börnstein Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, sechste Auflage, II Band, 6 Teil, Springer-Verlag, Berlin (1959) pp. 1-46

Other References:

Blom, E. C.; Phys. Rev. <u>13</u>, 308 (1919) Holborn, L.; Ann. Physik. <u>59</u>, 145 (1919) Meissner, W. and Voigt, B.; Ann. Physik. (5) <u>7</u>, 761, 892 (1930)

Comments:

Reference should be made to the preface at the beginning of the Electrical Resistivity section for an explanation of the graph. The value of electrical resistivity at 273°K (ρ_{273}) for molybdenum to be used in calculating values of electrical resistivity (ρ_T) is 4.4 x 10⁻⁶ ohm-cm.

The data for this graph were taken from the references cited above under "Sources of Data". The values listed in the Landolt-Börnstein tables are those reported by Meissner and Voigt; and Blom; while those values listed by the International Critical Tables are from Holborn. These original authors are used in labeling the two curves on the graph.

The data in the Landolt-Börnstein tables, the International Critical Tables and tabulated here are listed as ratios of electrical resistivity with respect to the resistivity at a datum temperature of 273 °K. The actual values of ρ_{273} for the samples used by the several investigators are not available so a datum value reported by Blom ($\rho_{273} = 4.4 \times 10^{-6}$ ohm-cm) is suggested for calculating values of electrical resistivity from these ratios.

The Landolt-Börnstein tables list the samples used by both authors as polycrystalline with no mention made of impurities present. No reference is made as to the nature of the sample used by Holborn, and no information is available on mechanical strain or heat treatment for any of the samples from any of the sources of data.

ELECTRICAL RESISTIVITY of MOLYBDENUM (Cont.)

Tables of Values of Electrical Resistivity

 ρ = Resistivity, (ohm-cm)

 ρ_{273} = Resistivity at 273°K, (ohm-cm)

Holborn			
Temp. °C	100p/p ₂₇₃		
- 78.2 - 80* -100* -120*	66.60 65.9 57.4 48.9		
-140* -160* -180* -192.5	40.5 32.2 24.2 19.11		
* Welues from internolation			

Meissner and Voigt			
Temp. °K ρ/ρ ₂₇₃			
1.5 4.2 20.4 77.8 86.9	0.0462 0.0455 0.0448 0.1370 0.1701		

Reprinted from WADD TECH. REPORT 60-56

Х-К-З

ELECTRICAL RESISTIVITY of NICKEL, Ni (Atomic Number 28)

Sources of Data:

International Critical Tables of Numerical Data, Physics, Chemistry, and Technology, VI, 1st Edition, Published for the National Research Council by the McGraw-Hill Book Co. Inc. (1929) pp 124-135

Landolt-Börnstein Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, sechste Auflage, II Band, 6 Teil, Springer-Verlag, Berlin (1959) pp 1-46

Other References:

Fleming, J. A.; Proc. Roy. Soc. (London) <u>66</u>, 50 (1900) Dewar, J.; Proc. Roy. Soc. (London) <u>73</u>, 244 (1904) Meissner, W.; Physik. Z. <u>27</u>, 725 (1926) Wise, E. M.; Proc. Inst. Radio Engrs. 25, 714 (1937)

Comments:

Reference should be made to the preface at the beginning of the Electrical Resistivity section for an explanation of the graph. The value of electrical resistivity at 273°K (ρ_{273}) for nickel to be used in calculating electrical resistivity is 6.14 x 10-6 ohm-cm.

The data for this graph were taken from the references cited above under "Sources of Data". The values listed in the Landolt-Börnstein tables are those reported by Meissner and Wise; while those values appearing in the International Critical Tables are from Dewar and Fleming. These primary references are cited above under "Other References". The original authors are used in labeling both curves on the graph.

The data in the Landolt-Börnstein tables, the International Critical Tables and tabulated here are listed as ratios of electrical resistivity with respect to the resistivity at a datum temperature of 273°K. The actual values of ρ_{273} for the samples used by the several investigators are not available so a datum value reported by Wise ($\rho_{273} = 6.14 \times 10^{-6}$ ohm-cm) is suggested for calculating values of electrical resistivity from these ratios.

The Landolt-Börnstein tables list the sample used by Wise as polycrystalline with 0.01% impurities of unknown composition. The sample used by Meissner is reported as a polycrystalline and annealed in a hydrogen atmosphere. No further pertinent information is available on any of the samples from any of the sources of data.

ELECTRICAL RESISTIVITY of NICKEL (Cont.)

Tables of Values of Electrical Resistivity

 ρ = Resistivity, (ohm-cm) ρ_{273} = Resistivity at 273°K, (ohm-cm)

Dewar and Fleming				
Temp. °C	100p/p ₂₇₃	Temp. °C	100p/p ₂₇₃	
- 78.3 - 80 + -100 +	61.3 60.5 51.8	-180 + -182.9 -200 +	21.7 20.8 15.6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
+ Values are from interpolation				

Meissner			
Temp.** °K	٩/٩ ₂₇₃ *		
1.34 4.21 20.40	0.00503 0.00508 0.00662		
78.8 87.4	0.0919 0.1179		
** The second decimal place is in doubt.			
* The fifth decimal place is in doubt.			

Reprinted from WADD TECH. REPORT 60-56

X-L-2

X-L-3

.

ELECTRICAL RESISTIVITY of NIOBIUM, No

(Atomic Number 41)

Source of Data:

Landolt-Börnstein Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, sechste Auflage, II Band, 6 Teil, Springer-Verlag, Berlin (1959) pp 1-46

Other References:

Meissner, W., Franz, H. and Westerhoff, H.; Ann Physik (5) <u>17</u>, 593 (1933)

Reimann, A. L. and Grant, K.; Phil. Mag. (7) 22, 34 (1936)

Comments:

Reference should be made to the beginning of the Electrical Resistivity section for an explanation of the data. The value of the electrical resistivity at 273°K (ρ_{273}) for Niobium to be used in calculating values of electrical resistivity (ρ_{T}) is 16.1 x 10⁻⁶ ohm-cm. This data should not be extrapolated to lower temperatures as Niobium becomes a superconductor between 8.7 and 8.9°K.

The data presented here were taken from the reference cited above under "Source of Data". The values listed in the Landolt-Börnstein tables are those reported by Meissner, Franz and Westerhoff; and Reimann and Grant, cited above under "Other References".

The data reported in the Landolt-Börnstein tables and tabulated here are listed as ratios of electrical resistivity with respect to the resistivity at a datum temperature of 273°K. The actual value of ρ_{273} is not available for the sample used by Meissner, et al. so a datum²⁷³ value reported by Reimann and Grant (ρ_{273} = 16.1 x 10⁻⁶ ohm-cm) is suggested for calculating values of resistivity from these ratios.

The Landolt-Börnstein tables list the samples used by Meissner, et al. as polycrystalline with 0.08% 0 and 0.02% Ta impurities present. No other pertinent information is given about either of the samples.

	,				
ρ Ρ ₂	ρ = Resistivity, (ohm-cm) $ρ_{273}$ = Resistivity at 273°K, (ohm-cm)				
	Meissner, Franz and Westerhoff				
	Temp. °K ρ/ρ ₂₇₃				
	9.33 20.4 78	0.035 0.0617 0.2416			

Table of Values of Electrical Resistivity

Reprinted from WADD TECH. REPORT 60-56

ELECTRICAL RESISTIVITY of PLATINUM, Pt

(Atomic Number 78)

Sources of Data:

International Critical Tables of Numerical Data, Physics, Chemistry, and Technology, VI, 1st Edition, Published for the National Research Council by the McGraw-Hill Book Co. Inc. (1929) pp 124-135

Landolt-Börnstein Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, sechste Auflage, II Band, 6 Teil, Springer-Verlag, Berlin (1959) pp 1-46

Other References:

Henning, F.; Handbuch der Physik IX, Berlin, Springer-Verlag (1926)

Holborn, L.; Ann. Physik. 59, 145 (1919)

Meissner, W.; Ann. Physik (4) 47, 1001 (1915)

Meissner, W.; Physik Z. 27, 725 (1926)

Meissner, W. and Grassmann, P.; Physik Z. 34, 516 (1933)

Onnes, H. K. and Tuyn, W.; Communs. Phys. Lab. Univ. Leiden Suppl. No. 58 (1926)

Van der Horst, H. D.; Tuyn, W. and Onnes, K. H.; Private communication with the editors of the <u>International Critical Tables of Numerical Data</u>, Physics, Chemistry, and Technology, VI, (1929)

Comments:

Reference should be made to the preface at the beginning of the Electrical Resistivity section for an explanation of the graph. The value of electrical resistivity at 273°K (ρ_{273}) for platinum to be used in calculating values of electrical resistivity (ρ_T) is 9.81 x 10⁻⁶ ohm-cm.

The data for this graph were taken from the references cited above under "Sources of Data". The values listed in the Landolt-Börnstein tables are those reported by Holborn; Meissner; and Meissner and Grassmann; while those values appearing in the International Critical Tables are from Henning; Tuyn and Onnes; and Van der Horst, Tuyn and Onnes. These primary sources are listed above under "Other References". The original authors are used in labeling the several curves on the graph.

The data in the Landolt-Börnstein tables, the International Critical Tables and tabulated here are listed as ratios of electrical resistivity with respect to the resistivity at a datum temperature of 273°K. The actual values of ρ_{273} for the samples used by the various investigators are not available so a datum value reported by Meissner ($\rho_{273} = 9.81 \times 10^{-6}$ ohm-cm) is suggested for calculating values of electrical resistivity from these ratios.

Comments: (cont.)

The sample used by Holborn is reported in the Landolt-Börnstein tables as cast polycrystalline with a very small amount of impurities present. The samples used by Meissner are reported as polycrystalline with a very small amount of impurities present. The Meissner sample from the 1915 reference is reported to have been annealed. The sample used by Meissner and Grassmann is reported as an annealed polycrystalline sample with less than 0.001% of Cu and Pb impurities present. No other pertinent information is given on any of the samples from any of the sources of data.

Tables of Values of Electrical Resistivity

 ρ = Resistivity, (ohm-cm) ρ_{273} = Resistivity at 273°K, (ohm-cm)

Holborn		Meissner		Meissner and Grassmann	
Temp. °K	٩/٩ ₂₇₃	Temp.* °K	٩/٩ ₂₇₃ **	Temp.* °K	٩/٩ ₂₇₃ **
20 81 195	0.0060 0.2060 0.6860	1.35 4.21 20.40 91.4	0.00165 0.00168 0.00607 0.250	1.35 4.2 20.4	0.00031 0.00031 0.00425
* The second decimal place is in doubt. ** The fifth decimal place is in doubt.					

3

ELECTRICAL RESISTIVITY of PLATINUM (Cont.)

Table of Values of Electrical Resistivity

 ρ = Resistivity, (ohm-cm)

 P_{273} = Resistivity at 273°K, (ohm-cm)

Temp.	Tuyn and Onnes	Van der Horst et al.	Henning
°C	100p/p ₂₇₃	100p/p ₂₇₃	1000/0 ₂₇₃
- 80	68.158	68 .01 7	67.782
- 90	64.113	63 . 955	63.688
-100	60.053	59 . 874	59.576
-120	51.863	51.650	51.295
-140	43.595	43.337	42.928
-160	35.213	34.904	34.463
-180	26.709	26.356	25.885
-200	18.176	17.750	17.268
-210	14.009	13.563	
-220		9•587	
-230		6•030	
-240		3•252	
-250 -255 -260	1.5885 1.335	1.571 1.1263 0.894	0.5706
-265	1.239	0.810	
-270	1.225	0.7863	

Reprinted from WADD TECH. REPORT 60-56

X-N-4

ELECTRICAL RESISTIVITY of SILVER, Ag (Atomic Number 47)

Sources of Data:

International Critical Tables of Numerical Data, Physics, Chemistry, and Technology, VI, 1st Edition, Published for the National Research Council by the McGraw-Hill Book Co. Inc. (1929) pp 124-135

Landolt-Börnstein Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, sechste Auflage, II Band, 6 Teil, Springer-Verlag, Berlin (1959) pp 1-46

Other References:

Dewar, J. and Fleming, J. A.; Phil. Mag. J. Sci. (5) <u>36</u>, 271 (1893) Holborn, L.; Ann. Physik <u>59</u>, 145 (1919) de Haas, W. J. and Van den Berg, G. J.; Physica <u>3</u>, 440 (1936) Meissner, W.; Physik. Z. <u>27</u>, 725 (1926)

Onnes, K. H. and Clay, J. Proc. Acad. Sci. Amsterdam 10, 207 (1908)

Comments:

Reference should be made to the preface at the beginning of the Electrical Resistivity section for an explanation of the graph. The value of electrical resistivity at 273°K (ρ_{273}) for silver to be used in calculating values of electrical resistivity is 1.47 x 10⁻⁶ ohm-cm.

The data for this graph were taken from the references cited above under "Sources of Data". The values listed in the Landolt-Börnstein tables are those reported by Dewar and Fleming; Holborn; de Haas and Van den Berg; and Meissner; while those values appearing in the International Critical Tables are from Onnes and Clay. These primary sources are listed above under "Other References". The original authors are used in labeling the curves on the graph.

The data in the landolt-Börnstein tables, the International Critical Tables and tabulated here are listed as ratios of electrical resistivity with respect to the resistivity at a datum temperature of 273°K. The actual values of ρ_{273} are not available for the samples used by the several investigators so a datum value reported by Dewar and Fleming ($\rho_{273} = 1.47 \times 10^{-6}$ ohm-cm) is suggested for calculating values of electrical resistivity from these ratios.

The samples used by the investigators appearing in Landolt-Börnstein are all reported as polycrystalline with a small amount of impurities present. The samples used by Holborn; and de Haas and Van den Berg were annealed. The sample used by Meissner was aged. No other pertinent information was listed for any of the samples in any of the sources of data.

ELECTRICAL RESISTIVITY of SILVER (Cont.)

Tables of Values of Electrical Resistivity

- ρ = Resistivity, (ohm-cm)
- ρ_{273} = Resistivity at 273°K, (ohm-cm)

Onnes and Clay					
Temp. °C	100p/p ₂₇₃	Temp. °C	100p/p ₂₇₃	°C	100p/p ₂₇₃
- 80 + -100 + -103.81 -120 + -139.87	67.8 59.6 58.087 51.4 43.282	-140 + -160 + -180 + -180 + -183.57 -195.17 -200 + -183.57 + -200 + -195.17 + -200 + -100 + -100 + -10000 + -100000 + -100000 + -100000 + -1000000 + -100000 + -100000 + -100000 + -100000 + -100000 + -1000000 + -100000 + -1000000 + -10000000000	43.2 34.8 26.3 24.679 19.703 17.6	-204.67 -220 + -240 + -252.92 -259.22	15.528 9.2 2.6 0.8913 0.6942

Holborn		Meissner		de Haas and Van den Berg	
Temp. °K	P/P273	Temp.* °K	p/p ₂₇₃ **	Temp. °K	р/р ₂₇₃
20 81 195	0.0054 0.2071 0.6841	1.34 4.21 20.4	0.00679 0.00682 0.01000	4.2 6.0 8.4	0.00266 0.00268 0.00274
		78.8 87.4	0.1974 0.2349	10.8 20.4	0.00288 0.00543

- * The second decimal place of the temperature values is somewhat in doubt.
- ** The fifth decimal place of the electrical resistivity ratio values is somewhat in doubt.
 - + Values from interpolation.

Reprinted from WADD TECH.REPORT 60-56

ELECTRICAL RESISTIVITY of TANTALUM, Ta

(Atomic Number 73)

Sources of Data:

International Critical Tables of Numerical Data, Physics, Chemistry, and Technology, VI, 1st Edition, Published for the National Research Council by the McGraw-Hill Book Co. Inc. (1929) pp 124-135

Landolt-Börnstein Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, sechste Auflage, II Band, 6 Teil, Springer-Verlag, Berlin (1959) pp 1-46

Other References:

Burgers, W. G. and Basart, J. C. M.; Z. Anorg. Allgem. Chem. 216, 223 (1934)

Holborn, L.; Ann. Physik 59, 145 (1919)

McLennan, J. C., Howlett, L. E. and Wilhelm, J. O.; Trans. Roy. Soc. Can. 23, III, 287 (1930)

Meissner, W. and Voigt, B.; Ann. Physik (5) 7, 761, 892 (1930)

Comments:

Reference should be made to the preface at the beginning of the Electrical Resistivity section for an explanation of the graph. The value of electrical resistivity at 273°K (ρ_{273}) for tantalum to be used in calculating values of electrical resistivity (ρ_T) is 12.4 x 10⁻⁶ ohm-cm. The curves on this graph should not be extrapolated to lower temperatures as tantalum becomes a superconductor at 4.38 degrees.

The data for this graph were taken from the references cited above under "Sources of Data". The values listed in the Landolt-Börnstein tables are those reported by Burgers and Basart; McLennan, Howlett and Wilhelm; and Meissner and Voigt; while those values appearing in the International Critical Tables are from Holborn. These primary sources are cited above under "Other References". The names of the original authors are used in labeling the curves on the graph.

The data in the Landolt-Börnstein tables, the International Critical Tables and tabulated here are listed as ratios of electrical resistivity with respect to the resistivity at a datum temperature of 273°K. The actual values of ρ_{273} are not available for the samples used by the several investigators so a datum value reported by Burgers and Basart ($\rho_{273} = 12.4 \times 10^{-6}$ ohm-cm) is suggested for calculating values of electrical resistivity from these ratios.

The samples used by the investigators appearing in Landolt-Börnstein are reported as polycrystalline with no mention made of impurities. No other pertinent information is given about any of the samples from any of the sources of data.

ELECTRICAL RESISTIVITY of TANTALUM (Cont.)

Tables of Values of Electrical Resistivity

 ρ = Resistivity, (ohm-cm)

 ρ_{273} = Resistivity at 273°K, (ohm-cm)

Holborn				
Temp. °C	100p/p ₂₇₃	Temp. °C	100p/p ₂₇₃	
- 78.2 - 80 + -100 + -120 +	72.98 72.4 64.9 57.3	-140 + -160 + -180 + -192.6	49.6 41.9 34.3 29.55	

Meissner and Voigt		McLennar., Howlett and Wilhelm	
Temp.* °K	٩/٩ ₂₇₃	Temp. °K	ρ/ρ ₂₇₃
4.29 4.49 20.44 77.61 88.30	0.00019 0.0099 0.0140 0.2037 0.2511	4.3 20.6 80.0	0.029 0.033 0.230

* The second decimal place of the temperature values is somewhat in doubt.

+ Values from interpolation.

Reprinted from WADD TECH.REPORT 60-56

ELECTRICAL RESISTIVITY of TIN, Sn

(Atomic Number 50)

Sources of Data:

International Critical Tables of Numerical Data, Physics, Chemistry, and Technology, VI, 1st Edition, Published for the National Research Council by the McGraw-Hill Book Co. Inc. (1929) pp 124-135

Landolt-Börnstein Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, sechste Auflage, II Band, 6 Teil, Springer-Verlag, Berlin (1959) pp 1-46

Other References:

Jaeger, W. and Diesselhorst, H.; Wiss. Abhandl. physik. tech. Reichsanstalt, 3, 269 (1900)

Meissner, W.; Physik. Z. 26, 689 (1925)

Onnes, K. H. and Tuyn, W.; Proc. Roy. Acad. Sci. Amsterdam 25, 443 (1923)

Comments:

Reference should be made to the preface at the beginning of the Electrical Resistivity section for an explanation of the graph. The value of the electrical resistivity at 273°K (ρ_{273}) for tin to be used in calculating values of electrical resistivity (ρ_T) is 11.15 x 10⁻⁶ ohm-cm. The curves should not be extrapolated to lower temperatures as tin becomes a superconductor at 3.74°K.

The data for this graph were taken from the references cited above under "Sources of Data". The values listed in the Landolt-Börnstein tables are those reported by Jaeger and Diesselhorst; and Meissner; while those values appearing in the International Critical Tables are from Onnes and Tuyn. These primary sources are listed above under "Other References".

The data in the Landolt-Börnstein tables, the International Critical Tables and tabulated here are listed as ratios of electrical resistivity with respect to the electrical resistivity at a datum temperature of 273°K. The actual values of ρ_{273} for the samples used by both the investigators are not available so a datum value reported by Jaeger and Diesselhorst ($\rho_{273} = 11.15 \times 10^{-6}$ ohm-cm) is suggested for calculating values of electrical resistivity from these ratios. Jaeger and Diesselhorst report less than 0.03% Pb impurity in the polycrystalline sample used in the determination of ρ_{273} .

The Landolt-Börnstein tables list the samples of Meissner as polycrystalline with no mention of impurities present. The sample used by Onnes and Tuyn is reported as polycrystalline with less than 0.01% impurities of unknown composition. No information was given on the mechanical or heat treatment of any of the samples from any of the sources of data.

X-Q-1

ELECTRICAL RESISTIVITY of TIN (Cont.)

Tables of Values of Electrical Resistivity

 ρ = Resistivity, (ohm-cm)

 ρ_{273} = Resistivity at 273°K, (ohm-cm)

Onnes and Tuyn				
Temp. °C	100p/p ₂₇₃	Temp. °C	100p/p ₂₇₃	
-102.13 -115.14 -127.50	57.36 52.16 47.25	-209.98 -218.30 -252.65	14.67 11.45 1.162	
-141.06 -158.74 -182.80	41.90 34.91 25.44	-254.95 -256.61 -258.89	0.836 0.637 0.409	
-194.07 -202.07	20.98 17.79	-269.33	0.099	

Meissner				
Temp. °K	p/p ₂₇₃			
4.2 20.4 88.2	0.00078 0.0120 0.2457			

Reprinted from WADD TECH.REPORT 60-56

X-Q-3

ELECTRICAL RESISTIVITY OF SOME COMMERCIAL ALLOYS at LCW TEMPERATURES

다. 종종(

Sources of Data:

Low Temperature Electrical Resistance of Fifteen Commercial Conductors, O.E. Park, M.M. Fulk, M.M. Reynolds. NBS Report 3517, Pages 101 & 102, (1954)

Engineering Alloys, 3rd ed., Norman E. Woldman, American Society for Metals, (1954)

Other References:

E.F. Burton et al, <u>Phenomena at the Temperature of Liquid</u> <u>Helium</u> (245-281) Reinhold Publishing Corporation, New York (1940)

Bruce Chalmers, <u>Progress in Metal Physics</u>, Vol. 3 "Properties of metals at low temperatures" by D.K.C. MacDonald, Interscience Publishing Company, (1952)

Comments:

ADVANCE

Composition: 54-55 Cu, 44-46 Ni

Manufacturer: Driver Harris Co., Harrison, N.J.

6000000000000000000000000000000000000
4./ 0A10

CHROMEL A

Composition: 80 Ni, 20 Cr

Manufacturer: Hoskins Mfg. Co., Detroit, Mich.

<u>Temp. (⁰K)</u> 19.7 76.0 193.0 273.2	$\begin{array}{c} \underline{\rho} (\text{ohm-cm}) \\ 1.02 \times 10^{-4} \\ 1.03 \times 10^{-4} \\ 1.04 \times 10^{-4} \\ 1.05 \times 10^{-4} \end{array}$

CUPRON

Composition: 55 Cu, 45 Ni

Manufacturer: Wilbur B. Driver Co., Newark, N.J.

<u>Temp.(⁰K)</u> 19.7 76.0 193.0 273.2	$\frac{\rho (\text{ohm-cm})}{4.31 \times 10^{-5}}$ 4.57×10^{-5} 4.70×10^{-5} 4.74×10^{-5}

X-S,T,U

EVANOHM

Composition: 20 Cr, 75 Ni, 2.75 Al, 2.75 Cu

Manufacturer: Wilbur B. Driver Co., Newark, N.J.

$\begin{array}{c cccc} \hline 19.7 \\ 193.0 \\ 273.2 \\ \hline 1.32 \times 10^{-4} \\ 1.33 \times 10^{-4} \\ 1.33 \times 10^{-4} \\ \hline 1.33 \times 10^{-4} \\$	<u>Temp. (^OK)</u> 19.7 193.0 273.2	<u>p (ohm-cm)</u> 1.32x10 ⁻⁴ 1.33x10 ⁻⁴ 1.33x10 ⁻⁴
--	--	--

MANGANIN

Composition:	84	Cu,	12	mn,	4	Ni		
	10.	5-13	3.5	Mn.	1-	-2 Ni.	bal.	Cu

Manufacturer: Wilbur B. Driver Co., Newark, N.J. Driver Harris, Co., Harrison, N.J.

$\frac{\rho (\text{ohm}-\text{cm})}{4.24 \times 10^{-5}}$ 4.44×10^{-5} 4.69×10^{-5} 4.73×10^{-5}
4.73x10 ⁻⁵

NILSTAIN (SS Type 304)

Composition: 0.11 Max. C, 17-19 Cr, 7-11 Ni, bal.Fe

Manufacturer: Several

$\begin{array}{c c} \underline{\text{Temp.}} \begin{pmatrix} {}^{O}\text{K} \end{pmatrix} & \underline{\rho} (\text{ohm-cm}) \\ 19.7 & 5.52 \times 10^{-5} \\ 76.0 & 5.60 \times 10^{-5} \\ 193.0 & 7.07 \times 10^{-5} \\ 273.2 & 1.02 \times 10^{-4} \end{array}$	
---	--

TROPHET A

Composition: 80 Ni, 20 Cr

Manufacturer: Wilbur B. Driver Co., Newark, N.J.

<u>Temp. ([°]K)</u>	<u>p (ohm-cm)</u>
19.7	1.09x10-4
76.0	1.09x10-4
193.0	1.09x10-4
273.2	1.11x10-4
2/3.2	1.11X10 -

ELECTRICAL RESISTIVITY VERSUS TEMPERATURE FOR TYPE 304L STAINLESS STEEL

X-Z-4

ELECTRICAL RESISTIVITY VERSUS TEMPERATURE FOR TYPE 310 STAINLESS STEEL

Temperature,F

.

ELECTRICAL RESISTIVITY VERSUS TEMPERATURE FOR TYPE 310S STAINLESS STEEL

Temperature, K

ELECTRICAL RESISTIVITY TEMPERATURE VERSUS FOR TYPE 321 STAINLESS STEEL