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Outline of Presentation

Emphasis will be on the progress since the last review 
rather than the repetition, except where  necessary

•Field harmonics in the ends
Including profile along the axis

•Reduction of peak fields in the coil ends

• 3-d calculations with iron yoke and cryostat
Yoke saturation and fringe fields
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Codes Used in Optimizing and Analyzing Ends

The following are “in house” codes for end optimization:
(CERN advises that the ROXIE can not be used for this application).

CNSTND15: Used for first turn. Starting ellipses. Designs end post. 

CNSTND22MB: Designs relative mechanical layout of all turns. 

Optimize tilt and deviation from constant perimeter (parameter AKF)

SMINSQ22MB: Minimize harmonics by adding straight sections to turns

ENDHRM22MB: Generates 3-d coordinates of Return end for all turns.

Also generates end spacers and wedge tips.

LENDHRM22MB: Same as ENDHRM22MB but for lead end.

Plus OPERA 3-d, a commercial code for calculations with iron saturation
Also extensively used PARD2DOPT, a 2-d coil optimization code.
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Ends Shown During the Last Review

One request was to try different color for the coil

Four coils together
One coil

Gerry Morgan was consultant in this project
These ends also served as a tech transfer exercise
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Progress Since the Last Review

… and we honored the request.
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More Views of the Coil Ends
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Block Structure

End

SS

Straight section (6 blocks, 70 turns):
30 20 10 4 3 3 (counting from midplane)

3  3  4  10  20  30 (counting from pole)

End section (8 blocks, 70 turns):
10   5 8  4  13  4 6 20   

(counting from pole)
Straight section => pole

3,3,4 => 10
4,10, 20 => 5, 8, 4, 13
30 => 4, 6, 20

Must avoid large Ultum spacers 
(subdivide, if necessary)

Equal spacing in “Red Color” blocks is used as harmonic optimization parameters
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Silent Features of the Current Design

• The design is well optimized for low harmonics in the Ends.

• Mechanical turn layout is developed based on prior experience

•Large radius means lower tilt and lower strain on cable in ends

In this design the tilt (< 4 degree) and strain (< 4%) on cable is less 

than what has been in earlier RHIC and SSC Magnets.

Large bore, however, also means one must deal with large end forces.
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End Harmonic Optimization: SMINSQ

Design A
Parameters optimized: 

End spacers in block #2 (with 5 
turns) and end spacer in block #7 
(with 6 turns). 
All spacers with in a block have the 
same size.

Changing the size of two group of end 
spacers was adequate to get all 
harmonics small.
Computed values: 

B5< 1 unit-meter; 
B9 and B13 <0.1 unit-m

Effective Magnetic Length ~15.6 cm
Mechanical Length ~28 cm + End Saddle

Block configuration:

(8 blocks, 70 turns):

10, 5, 8, 4, 13, 4, 6, 20   

(counting from pole)
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Field through the Coil Ends

B1(T)@12cm
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Mechanical length of this end (including 
end saddle) ~34 cm : ~ 2 coil diameters

Contribution to magnetic length ~16 cm

Last turn
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Field Harmonics through the End
b5: dodecapole

B5(GAUSS)@12cm
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b5 at 12 cm in 10^4 units, normalised to central gradient
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End spacers are optimized to 
produce low integral harmonics
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Field Harmonics through the End : b9

B9(GAUSS)@12cm
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End spacers are optimized to 
produce low integral harmonics
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Field Harmonics through the End : b13

B13(GAUSS)@12cm
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End spacers are optimized to 
produce low integral harmonics
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Do We Expect to Meet the Spec?

The current specifications for ends are equivalent of 5 unit  of straight section 
for b5 and 1 unit for other harmonics. 

1 unit for 3 meter magnet => 3 unit-meter in ends

Do we Expect to meet the spec for End Harmonics?

YES for B5, B9 and B13 and also most other harmonics.

This is not only from the theoretical calculations but also based on 
our experience with SSC and RHIC Ends.

For A2 and B2 we need to study the influence of leads and of coil 
length mis-match but we think it should not be a problem.



Superconducting 
Magnet Division

R. Gupta, BNL, 3-d  MAG, AHF Workshop, Sept 19-20, ‘02 15/40

Peak Field in the Ends

As mentioned in the last review, the peak field in the current ends is 
higher than that in the body. 
Here, we present the work in progress to re-design the ends.
Note: The cable tilt and strain will not change much, only the layout will.

In cosine theta magnets, the conductors in the ends are more strained 
and the mechanical design is generally less robust. 
Therefore, we like peak field in the ends to be less than that in the body 
of the magnet so that there can be a larger conductor margin there.

In this application, the ends are subjected to lesser heat load(? )
Does this mean that even if ends have some what less computed short 
sample, they may still have larger operating margin? 

At this stage we would try the ends to have a similar margin as that in 
the straight section of the magnet.
The issue is mechanical length Vs. magnetic length of the magnet.
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Reductions of the Peak Fields in the Ends 
(Summary Slide)

OPERA3d Calculations for coil only Two pole spacers reduce peak field  
=> 3.61 T to 3.36 T

Three readjusted spacers 
=> 3.61 T to ~3 T

Design presented in the last review 
Peak Field =3.61 T

Peak Field in S.S. ~3 T 
(more accurate calculations give lower)
Grad = 13.4 T/m, radius = 18cm
Field @ coil inner radius ~2.45 T
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More Views of Peak Field in the Ends
(Improved model of the design presented last time)

Large “Peak Field” in the pole block
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More Views of the Current Model
Spacers to Reduce the Peak Field in the Pole Blocks
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Ends with 3 Re-adjusted Spacers

3 re-adjusted spacer should 
bring field down to S.S. level.
Work in progress. 

This information will be used in 
optimizing new ends. The mechanical 
layout of the turns (tilt angle, strain on 
the conductor) do not change; only 
the value of end spacers changes.
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Peak Field 
Straight Section vs. Ends

Field @ midplane ~2.45 T
Peak Field in S.S. ~3 T @ pole block
Peak Field in Ends in original design ~3.61 T
=> with 2 end spacers between pole blocks ~ 3.36 T
=> Peak field in ends with 3 re-adjusted spacers ~3 T
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3-d Calculations with Iron Yoke
(model shown during the last review)

Mesh funnels out on horizontal axis
If cross talk is present, it would be maximum when the separation between 
the two quads is minimum. It should drop rapidly as the separation increases.
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Important z-locations

Trig sin(7.5) tan(7.5)
3000 391.57 395

17inch+ 3431.8 447.93 452
15inch+ 3812.8 497.66 502
103/2 inch+ 5120.9 668.39 674
103/2 inch+ 6429 839.13 846
15inch+ 6810 888.86 897
4.85inch+ 6933.2 904.94 913
133inch+ 10311.4 1345.87 1357
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Overall Isometric  View (cut)

Yoke ends here

Yoke ends here



Superconducting 
Magnet Division

R. Gupta, BNL, 3-d  MAG, AHF Workshop, Sept 19-20, ‘02 24/40

Magnetic Shielding in Interconnect Region

Magnetic 
pipe 
thick 
enough 
to shield 
the flux

cryostat (green)
heat shield yellow)
shells (silver)
collars (yellow)
coils (red)

Previous Design
Current Design



Superconducting 
Magnet Division

R. Gupta, BNL, 3-d  MAG, AHF Workshop, Sept 19-20, ‘02 25/40

Field on the Surface of 
Iron without Shield Ring

High Leakage Area
(Cryostat only)
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Fun Picture: Flux Punching through 
an Imaginary Wall at 60 cm

Is every one convinced now 
of the need of thicker iron 
pipe over interconnect region
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3-d Calculations with Iron Yoke

Iron over end side (case).
This is on the side of no 
inter connect magnet. 

Except for the magnets 
closet to target, the adjacent 
magnets are well separated 
to ignore the field of the other 
magnet.

Models such as this (with 
boundary condition far away) 
represent all those cases. 
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Model in XY Plane (Cut)
Boundary far away, iron over end
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Field on the Surface of Yoke

Low field on cryostat

1. 85 T
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By at x=10 cm along z-axis

Field near the end
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Field along x-axis in the Middle of Magnet
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Field along x-axis Outside the Yoke 
in the Middle of Magnet

This also gives an indication of when 
to expect influence of another magnet



Superconducting 
Magnet Division

R. Gupta, BNL, 3-d  MAG, AHF Workshop, Sept 19-20, ‘02 33/40

Field ~4 cm away from yoke (X=40 cm)

Accuracy limited by 
mesh resolution 
(average should be 
more accurate)
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Case when Two Magnets are close by 
(apply appropriate boundary condition)

Boundary

Field normal 
when two 
quads have the 
same sign of 
gradient, 
tangential when 
opposite)

In this model 
boundary is placed at 
the magnet midpoint.
Ideally, the boundary 
should be inclined
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Field Outside the Yoke at Mid-point

Field normal 
boundary with 
boundary condition 
at magnet midpoint 
location (X~66 cm)

Two quads 
powered for 
producing 
gradient having 
the same sign
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Field along z-axis just 
outside the yoke

Case when iron ring 
was not placed over 
interconnect region

Field normal 
boundary with 
boundary condition 
at magnet midpoint 
separation
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Tangential Boundary Condition

Small value at X ~ 60 cm (near 
boundary) suggest cross talks 
are not significant.

Field tangential 
boundary with 
boundary condition 
at magnet midpoint 
location (X~66 cm)

Two magnets 
powered with the 
opposite polarity
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Normal Boundary Condition
(applied at the entrance location)

Field normal boundary with boundary 
condition at the entrance of coil (end 
saddle and iron yoke) X ~40-45 cm

Two adjacent magnets are 
powered with the same polarity
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Tangential Boundary Condition
(applied at the entrance location)

Field normal boundary with boundary 
condition at the entrance of coil (end 
saddle and iron yoke) X ~40-45 cm

Two adjacent magnets are powered with 
the opposite polarity
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SUMMARY

•This is still work in Progress!

• We have a good mechanical layout of end turns (end block).
Low tilt and low strain; to be maintained in iterated ends because of the 
way it is being iterated.

• Theoretical calculations show that low end harmonics can be obtained. 
PARNDOPT design is verified by OPERA3d.

• Strategy for low peak field presented.

Need to carry out this optimization process further for both low peak 
field and low end harmonics.  Should work.

Expected to meet the required field quality tolerances.

• Influence of yoke is computed.
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