

U.S. MAGNET DEVELOPMENT PROGRAM

Preliminary Results of the HTS/LTS Hybrid Dipole Test MDP Video meeting on February 19, 2020

Ramesh Gupta For Superconducting Magnet Division Brookhaven National Laboratory

Contributions from

Work presented here and the work being performed now is thanks to many individuals, including:

Bill Sampson, Shresht Joshi, Anis Ben Yahia, Piyush Joshi, Bill McKeon, Sonny Dimaiuta, Denny Sullivan, Peter Galioto, Pat Doutney, Mike Anerella, John Cozzolino, Ray Ceruti, ...

Fixture inside the magnet

Run Plan for Magnetization Studies (almost everything planned in this slide done, perhaps not always be in the order planned)

Magnetization Studies Test Program at 4.5 K.

Purpose: To perform magnetization studies of HTS coils first by themselves and then in the background field of the Nb₃Sn common coil magnet.

During the following tests the magnet field should be measured continuously by the Hall probes and recorded.

- 1. **HTS Nomex Coil Only** (difference voltage between two HTS pancake coils must remain < 2 mV and attempt should be made that the HTS coil doesn't quench)
 - Ramp up to 100 A and down to 0 A
 - Ramp up to 200 A and down to 0 A
 - Ramp up to 400 A and down to 0 A
 - Ramp up to 600 A and down to 0 A
 - Ramp up to 800 A and down to 0 A
- 2. **HTS No-Insulation Coil Only** (difference voltage between two HTS pancake coils must remain < 10 mV and attempt should be made that the HTS coil doesn't quench)
 - Ramp up to 100 A and down to 0 A
 - Ramp up to 400 A and down to 0 A
 - Ramp up to 800 A and down to 0 A
 - After review of results of above tests, make plan to ramp to higher currents

3. LTS (Nb3Sn) Coil Only

- Ramp gradually in steps to 10000 A (no quench at 10000 A in 2017 test and it reached 10,800 A in 2006).
- If magnet trains, we will stop at 5 quenches and limit further operation of the LTS magnet to 90% of the current reached at the 5th quench.
- If the magnet reaches 10000 A without quench, ramp the magnet to quench and limit further operation of the LTS magnet to 90% of the current reached.

4. HTS/LTS Hybrid Magnetization Tests

- Hold LTS magnet at 500 A, 1 kA, 2 kA, 4 kA, 6 kA, and 8 kA, and for each HTS coil ramp up and down to whatever current safely possible without quenching (800 A nominal max).
- Reduce current in LTS magnet and perform above steps.

Test Run at 4 K in HTS/LTS Hybrid Dipole (~2 T background field from Nb₃Sn coils)

0.4

0.2

0

0

50

100

150

200

250

Current [A]

300

1000

500

(2019 MDP)

400

450

350

Significant reduction in magnetization from HTS coils when field is primarily parallel to the wide face when compared to primarily perpendicular

Office of Science

4 K run – No background field

4 K Magnetization Run in Background Field (background field subtracted)

Background field substracted

Click to edit Master title style

Quench Protection of HTS/LTS Hybrid Dipole

Office of Science

Cutout View for Nb₃Sn coils at 10 kA and HTS coils at 1 kA (with Nomex insulation and No-insulation)

UNITS m Longh m Magn Pika Density T Magn Flack Density T Magn Flack Density A Magn Elach Pik A Prover W Prover W Prover W Prover N Elach Density A Magnetotakt (TCAS) Magnetot

HTS coils are installed with as low clearances. Horizontal Lorentz forces brings them in contact with the LTS coils

ANSYS Run Transverse Stress and Strain from Nb₃Sn 10 kA, HTS 1 kA

LTS Coils

Insulated Coil Powered with the common coil (field in NI coil: Nb3Sn field + trapped field)

HTS Coil was ramped to the maximum of PS after the quench to check damage from the quench

Nb₃Sn coil quenched

Science

Field and Current Decay (coupling studies)

Current Decay

Planned Quenches

DATE	TIME	HTS COIL	Nb3Sn Coil (A)	HTS Coil (A)	B, hybrid (T)	B, Nb3Sn + trapped
13-Feb-20	1955	Nomex	9830	955	12.3 Tesla	9.39 Tesla
14-Feb-20	1157	Nomex	9617	955	11.96 Tesla	9.87 Tesla
14-Feb-20	1652	NI	10120	955	12.09 Tesla	10.37 Tesla
15-Feb-20	1318	NI	9171	1000	11.53 Tesla	9.34 Tesla
15-Feb-20	1336	NI	-	1590	4.23 Tesla	0.27 Tesla
15-Feb-20	1414	NI	8000	1110	10.74 Tesla	8.1 Tesla
15-Feb-20	1502	NI	9000	910	11.23 Tesla	9.2 Tesla

All quenches in LTS coils.

HTS coils seems to tolerate quenches from Nb3Sn coils (large energy transfer)

Click to edit Master title style

Extra slides

HTS Coil in 2 T Field (primarily parallel to the wide face) NI COIL

2016 Test (Field Perpendicular)

Office of Science

Feedback of Quenching of HTS Coils on LTS Coils in HTS/LTS Hybrid Magnet (2016)

4800

-0.01

0

0.01

Time (sec)

0.02

Coupling between the HTS & LTS coils

0

0.03