Multipole Expansion of Two Dimensional Field in Free Space

In free space (no true currents), the magnetic field H (= B/my) satisfies:

N“H=0 p N"B=0p B=-KNF, Fm=“£gTGENNETTIfLSCALAR

The magnetic induction, B = myH always satisfies N.B = 0. Therefore,

N2F m=0 LAPLACE’'S EQN. FOR SCALAR POTENTIAL

In cylindrical coordinates, and for no z-dependence (2-D fields):

20 1 & TF o, el 68°F 0

%rﬂﬂrg Ir o %r2@§ 19 g =0

writing F (r,q) = R(r)Q(q), and imposing the conditions
Q(q+2p)=0Q(q); R(r)= finiteatr =0

we get the solution of the Laplace’ s equation:

.n-1

¥ er 0
B (r.q) =- a (n)é = sn[n(g- ap)]
n=1 ef O

%ﬂrﬂ

.n-1

By, q)—?gffF———acm)é = oodn(a- a,)

C(n) and a, are constants and R is an arbitrary REFERENCE RADIUS,
typically chosen to be 50-70% of the magnet aperture.
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Multipole Expansion of Two Dimensional Field in Free Space

Y-axis

-

X-axis

From the cylindrical components, we can get the Cartesian components:

¥ @y 6"t
Bx(r,q) =B, cosq- Bysing= a C(n)é é sin[(n- 1)g- na]
®r o't
By(r,q) = B, sinq+ B, cosq = a C(n) Rr—: cog(n- 1)q- nay]
)

Define a Complex function, B(2) = By(X, y) +iBx(X, y) of the complex
variable, z=x + iy = r.exp(iq):

3 ® 7
B(2) = By(x,y) +iBy(x,y) = [C(n)exp(- inan)]t;

n=1 8

QI IO=
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Normal and Skew Components of the Two-dimensional Field

The complex field B(2) is given by:
n-1

B(2) = By (x,Y) +iBy(x,Y) = a [c(n)exp(- man)](?—?
n=1 SRTEfﬂ

The rea and the imaginary parts of the expansion coefficients are defined as
the NORMAL and the Skew Components:

C(n)exp(—ina,) = (2n-PoLE NORMAL TERM) + i(2n-POLE SKEW TERM)

Unfortunately, theindex n in the expansion coefficient is not the same as the
corresponding power (n—1) of z in the above equation. This has led to two
different conventions in denoting the normal and the skew terms:

2n-pole Normal Term = C(n)cos(na,)° B,.1

2n- pole Skew Term = - C(n)sin(na,)° A, ; “U.S. CONVENTION”

2n-pole Normal Term = C(n)cos(na,)° B,

2Nn- p0|e Skew Term = - C(n)sin(nan)o Ah EUROPEAN CONVENTION

In terms of the normal and skew components the expansion of B(2) is:

B(2) =By +iB, = a [B +iAy] é— “U.S. CONVENTION”
y .n-1
] o ] &k 7 0
B(2)=B, +iB, = g [B, +iA,] é—: “ EUROPEAN CONVENTION”
=1 Ret &

The “U.S. Convention” leads to a more elegant looking equation without the
(n=1) in the powers, whereas the “European Convention” retains the smple
relationship between the n-th term and the number of polesit represents.

For work done in the US for the LHC project, the "European Convention” is
generally followed.
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Normal and Skew Components as Field Derivatives

The complex field is given by:

_ & 7
B(2) =By +iB, = [B +iAy] g “U.S. CONVENTION"

&IIO=

.N-1

. S .2z 0
B(2)=B, +iB, = Q [B, +iA)] g—i “ EUROPEAN CONVENTION”
n=1 Rref 1]

where B, and A, are the Normal and the Skew Components.

It is possible to assign a physical significance to the norma and the skew
components in terms of the gradients of the field. It is easy to show that

0 g §
B, (US) = B,,;(European) = Re gﬂ yj
n! gﬂxn '

x=0;y=0

n n3o0
Av(US) = Aryy (European) = Rfe,f ¢ %
ﬂX x=0;y=0

The normal components of various orders are thus related to the derivatives
of corresponding orders of the vertical component of the field aong the
midplane of the magnet. Similarly, the skew components of various orders are
related to the derivatives of corresponding orders of the horizontal component
of the field along the midplane of the magnet.
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Examples of Normal and Skew Magnets

NORMAL DIPOLE v SKEW DIPOLE

N

NORMAL QUADRUPOLE SKEW QUADRUPOLE
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Fractional Field Coefficientsor Multipoles

The expansion of the complex field is given by:

. éé . x 7 dn-
B(2) = By (X, y) +iB(x,y) = @ [C(n) exp(- man)]gag

n=1

The real and the imaginary parts of the expansion coefficients are referred to
as the Normal and the Skew components respectively. These expansion
coefficients lead to the actual field strength in the magnet and are dependent
on the excitation level of a magnet. In accelerator applications, one is often
interested in the shape of the field, rather than its absolute magnitude. Thisis
done by expressing the various harmonic terms in the expansion as a fraction
of a REFERENCE FIELD, B :

n-1
B(2) = By(X,y) +iBy(X,y) = B a C(n)exp( man)UBez 6"
n= 1@ Bfef Rref g

Generaly, this reference field is chosen as the strength of the most dominant
term in the expansion. For a 2m-pole magnet, it is expected that the term for
n = mwill be the most dominant one. Hence, B¢ may be chosen to be equal
to C(m).

The Normal and Skew 2n-pole fractional field coefficients, or “MULTIPOLES”
are defined as:

eC(n)exp( ina )U B eC(n)exp( man) An 1

b1 = ap.1=Im (ON)
L @ Bref g Bref i é Bref Q Bref
é U é
b, = Rea €C(n) exp(- man)u ‘a. =Im C(n)exp( man)u An (EUROPEAN)
8 Bres g Bref @ Bres g DBref

In atypical accelerator magnet, these coefficients are of the order of 10*. The
coefficients are therefore often quoted after multiplying by 10%. With this
multiplicative factor, the values of the multipoles are said to be in “units”.
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Analyticity of the Complex Field B(2)

Any function of complex variable z given by:
F(2) =U(xy) +iV(xy)

is an Analytic Function of z if the real and the imaginary parts of the
function satisfy the Cauchy-Riemann conditions:

AUy _aqVvo
%ﬂxfb 8ﬂyéj

g 1y P ﬂxé CAUCHY-RIEMANN CONDITIONS

g EUS_ Vo

An analytic function of z can be shown to be a function of z alone, and not
its complex conjugate, z*. For the case of the 2-dimensional field in a source
free region, Maxwell’ s equations give:

o . B e B . .
N.B=0p ?BX9+§T Y2=0; or ?ﬁgz-gﬁE
xo efyo efy o Ix o

- 2B, 6 2B, 0 B, B, 6
N’ B),=0p ¢——2=- ¢ 2+=0 Y o= :
( )z X o &1y o Orgﬂxg &9y o

The Maxwell’s equations are identical to the Cauchy-Riemann conditions if
we choose U(X,y) =By(X, y) and V(X, y) =Bx(X, y). Thus the function
B(2) =By(X, y) +1 By(X, y) defined earlier is an analytic function of the
complex variable, z. It should be noted that the function

Bu(X, y) —iBy(X,y) ISALSO AN ANALYTIC FUNCTION OF Z

However,

Bu(X, y) +iBy(X,y) ISNOT AN ANALYTIC FUNCTION OF Z

An analytic function of z can be expressed as a power seriesin z, as we have
aready seen for the case of B(2) = By(X, y) +i1 B(X, y). The analyticity is
useful in dealing with two dimensional problems in magnetostatics.
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The Complex Potential
We define acomplex field, B(2) as:

. g . ez 0
B(2) = B, (x, y) +iBy(x,y) = @ [C(n)exp(- man)]é—i
n=1 Rref 17}

which is an analytic function of the complex variable z= X + iy. Accordingly,
we define a CompPLEX POTENTIAL W(Z) such that:

dw (2)
dz

B(Z) =-

It can be shown that the real and imaginary parts of this complex potential are
nothing but the vector and the scalar potentials respectively:

W (2) =W, (X, y) +IW(X,y)

dW(Z):dW(Z)E:-(By+iBX)1:§WVf"?+i§W\“?
dx dz dx Ix @ Ix 2
WO o A0 E@WO_ o _alF o
\%ﬂxb By %ﬂx@’ %ﬂxé B %ﬂxb
Similarly,
W(z) _dW(2) d2__p 1ig)i= 20, ;ZVUO
dy dz dy 8ﬂyfa 8ﬂyz
\ EWO_ o A0 WO _ o _oqF 50
. X

8ﬂ—yz 8ﬂy ) 8ﬂyb Y 89y o

It is clear from the above that the real part of the complex potential is the
(only) component, A, of the vector potential A, and the imaginary part of the
complex potential is the magnetic scalar potential, F . The complex potential
therefore contains a complete description of any field problem.
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Complex Field dueto a Current Filament at the Origin

A

Y

We first consider the ssimplest case of an infinitely long current filament
located at the origin, carrying a current | along the positive Z-axis, as shown

in the figure. At any point P located at (r, q), the magnetic field has the same

magnitude along a circle of radius r and is directed along the azimuthal
direction. From Ampere’s law:

Mol -
B=mH=-"
o 2pr q
_ . _ nol . ) _ . _ rTol
By = B, cosq- B,sing=- Z—prsmq, By, = B, sinq+ B, cosq —Z—prcosq
B(z) =B, +iB =10 Mol

2pr.exp(iq) - 2pz

The Complex Potential is therefore given by:
= p _.a@mlo __&@lo i
W(z) = - 0B(2)dz g 2 !.aln(z) + constant g 2 b[ln(r) +1q] + constant

The real and the imaginary parts of W(z) give the vector potential, A;, and the
scalar potential, F , respectively.
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Current Filament at an Arbitrary Location

A
Y/\ Y' B
P
|
. A\ :y-ay
q |
'&I X - ay X)'
e f

X

L et us consider the magnetic induction B at a point P(r, ) due to an infinitely
long current filament located at the point a = aexp(if ) =ax + ia, . In aframe
X' -Y’ with axes parallél to X-Y and having origin at the current filament,
the complex field is given by

_ | &
B(z) = By¢+iBy¢= %ﬂ%

_ _ lo ee | O
\ B(2) =By +iBy = By¢+iBy¢= B(z9 =§322’Zq§,: 82p?;)- a)EJ

The complex potential is given by:
N _ amlo _ amlo .

W(z)=- dz=-¢——=In(z- a) +const.= - c——=In(r § +iqq + const.

(2)=- B(2)dz=- g in(z- G o 2N +iad
The real and the imaginary parts of the complex potential give the component,
A, , of the vector potential and the magnetic scalar potential, F ., respectively.
Knowing the field due to a current filament at an arbitrary location, we can
determine the field due to any arbitrary distribution of current by
superposition.
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Multipole Expansion of Field dueto a Current Filament

The complex field at any point P due to
acurrent filament at z= aisgiven by:

_amplo 1
B(2)=¢ 2p 2 (z- a)

"Outside" Region

This expression is valid for all values of
Zin the complex plane and is singular at
z=a. We are interested in a multipole
expansion of the complex field in the
form of apower series:

"Inside” Region
(r<a)

B(2)= & [C(mexp(- )]aezt"’n_
7) = nyexp(- ina))|g—=
21 P gpfefb

Clearly, such an expansion can not be valid for all values of z. The complex
field has a singularity at z=a and the series diverges for [Z/® ¥. Let us
divide the entire X-Y plane into two regions — an “INSIDE” region extending
to r < a andan “ouTsiDE” region for r > a. The general expression for the
complex field can be expanded as a different power series in each of these
two regions. Let usconsider the“inside” region first.

Inside Region (r < a):

Bm(ZF?'%%(Z-a)'l Ml 21 0 epli(a- 1)y

gZpa exp(if Jog €aod
-1 ‘}f n-1
Using the binomial expansion (- X) "= a X"~ weget,
n=1
-1 )
2yl 6 & __aRg0 @z 0
Bi”(z):_%z—Ea exp(-lnf)g : é T

which isin the desired form.
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Multipole Expansion of Field dueto a Current Filament

"Outside” Region

"Inside” Region
(r<a)

The complex field inthe “INSIDE” region isgiven by:

0 o f ‘e ; 9
m(Z)—-gz——a expl- inf) & g —
.n-1
ez 0
° a[C(n)eXp( |an)]é T
n=1 o @
. N-
C(n) = ”b'|€ERref9 ) an:f+B for 1 >0; a,=f for I <O
2pa\e a g n

The NorRMAL and SKEw components of the 2n-polefield are (in US notation):
n-1

_ ampl gaRe 0 _ aamyl 6 8Rer O
Bn.1= %Zpaéf% - cos(nf ); A“1_82paﬂg " !.a sm(nf)

In the European notation, the 2n-pole components are denoted by'
.n-1

. 5
Bn:-aenbl(:).aEF\)'E"f = cos(nf); ambload?'d :

sin(nf
2padé a o M= onabs a p SN
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Multipole Expansion of Field dueto a Current Filament

v/ "Outside” Region v
(r>a) P

AN

Vald

"Inside" Region
(r<a)

For the “OuTSIDE” Region, we can expand the complex field as:

myl oe a0

)
3p! 0 .
Bout(2) = % ( 82pr exp(lq)ze %rgeXp{l( q)}H
¥
We use the binomial expansion (1= X) " =1+ 3 X" {0 get,
n=1
|68 5"
Bout(2) = ggi—eha [cos(nf ) +isin(nf )]g—; U
n=1 u

This series is NOT in the usual form of the multipole expansion for the field
inside a magnet aperture. However, it can be seen that this expansion

convergesfor [ZI® ¥ to Bow(2) ® [ml/(2pz)] asisexpected.
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Cylindrical Current Sheet of Uniform Current Density

Let us consider a cylin- A
drical current sheet of Y
radius a carrying a total
current of |. The current is
assumed to be distributed
uniformly and flowing only
along the Z-direction.

The complex field at any
point can be obtained by
integrating the contribu-
tions from small elements
of width df, as shown in
the figure. The expansion
of field from a filament for
r <a is different from that
forr > a..

The field due to the current element dl = (1.df )/(2p) at any point insideis:

-1
e ol 08 80" o it o

dBin(Z):'gzpa ng g P

1 2p
ey Oeel 64 anon < : _
a O=Xp(- inf )df =0
gZpaﬂéZpr 8 0

\ Bin(29)=

Similary, for any point outside the cylindrical shell, we have

n 2p
aam Oeel oA A0 _aéTb 0
Bouw(2) = gznggng cplf +ag Oexp(mf)dfu 2076

Thus, for points outside, a cylindrical shell of uniform current density behaves
asacurrent filament located at the origin. The field is zero inside the cylinder.
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Solid Cylindrical Conductor with Uniform Current Density

We consider a solid cylinder
of radius a carrying a total
current |. The field at any
point can be obtained by
dividing the solid cylinder
into thin shells. For any
point outside the cylindrical
conductor, all such shells
contribute. For any point P
a aradius r < a, as shown
in the figure, only shells
with radii X < r contribute.

Total current carried by a
thin shell of radius x and
thicknessdx is

dl = J.2pxdx; where J =% Isthe current density

pa

For any point inside the cylinder, the total complex field is:

(2) = oaedelo %ero gfm, waJo*
Bin 2szI Z QIO & 2z g 2 2’

where we have used the fact that r® =zz*. For any point outside the solid
cylinder, the total complex fieldis:

6 aan,dl & Jo Ja20 0

Bou (2) = gﬂb =g ode—gm’ TEE e

2020 € z 4 e 22 g €2 0274

It should be noted that Bjn(2) is a function of z*, and hence is NOT an
analytic function of z
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Two Overlapping Cylinders. Pure Dipole Field

YJ\

+J

o Nt \e)
¥

If two cylinders carrying equal and opposite current densities +J and —J are
separated along the X-axis by a distance Xo, then the region of overlap carries
no current, and may be replaced by aregion of free space. For any point z, in
this “aperture’, the complex field can be obtained from the expression for
Bin(2) for asingle cylinder:

B(2) = B () + B (2,) = 100 7 - EDI0 5

&5 54§ 5 5%
B(an)=§%%[z;-z;]:a@b3§gf o0& Xoou a0

2 9 2 @

The complex potential is thus a constant throughout the “aperture”. Since the
complex potential is given by By + iB,, we get in this case:

By:%g; BX:O
2 @

A pure dipole field is also produced by two overlapping cylinders with
elliptical cross sections. Similarly, two ellipses placed at right angles produce
a pure quadrupole field. In practice, the ends of the two current halves must
be truncated, which gives rise to unacceptably large higher harmonics.
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Solid Conductor of Arbitrary Shape: Integral Formula

A
Y
y4
Bout
C ' Zout
X >

Let us consider an infinitely long solid conductor of arbitrary cross section
defined by the contour C. Inside the region of the conductor, the Maxwell’s
equations give:

aéTByo B, 0 aQTon aBy 6
=W N>B =
811x 8ﬂyﬁ oJ206Y) g‘ﬂXfZj gﬂyz

For a constant current density, J,(X,y) = J, it can be shown that the function:

(N" B), =

F(2)=8,(x ) +iB,(xy)- T2z =B(D)- T2

Is an analytic function of z. This function can be evaluated as a contour
integral over the boundary of the conductor as:

J08> y4{0a

p 90
C

F(2)= |% 4 dz¢: Bin(2) - ?%ng* for z= z,

Bou(2) isthe same as F(2) for z = zyy.

[Reference: R.A. Beth, J. Appl. Phys. 38(12), 4689-92 (1967)]
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Solid Conductor of Arbitrary Shape: Integral Formula

dz, z

Z —z=r.exp(if)

Area

ABGH + CDEF

= PAB - PCD
+ PEF — PGH

Field at P(2) dueto atriangular wedge PAB is given by:

zﬂfodeoo rdr a6 _

dB(z) = - : ——rex if df—-— zC 2)* df

@=- S o) 2 PN = E e 2
0

zC- z=rexp(if ); dzt/(z¢- z)=(dr/r)+idf

\ df _aeiggaedz(ll dz¢* 0

eligazt z ¢ - Z*g

The total field at P(z) due to the entire conductor istherefore,

aem)J o 3 (2& 2)*dz¢ o U aem)J 0 (z¢ 2)*dz¢
B ¢
(2)= e ily) g z¢ z 8)d H e 4p g §) z¢ z

This appliesto all points, whether inside or outside the conductor.

[Reference: R.A. Beth, J. Appl. Phys. 40(12), 4782-6 (1969)]
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Solid Elliptical Conductor with Uniform Current Density

Y

BOU'[

The field inside and outside the élliptical conductor shown in the figure can
be obtained using the integral formula for 2-D fields [R.A. Beth, J. Appl.
Phys. 38(12), 4689-92 (1967)]. Theresult is:

mJoA 2ab u
&2 by, [7- (22 D)

|n(z)_m[bx' iay]; Bou(2) =

For acircular conductor, b = a, and these expressions reduce to:

o 630

Jo
|n( z) = ?L +Z, Bout( z) = TI_Je zT CIRCULAR CONDUCTOR

Using the expression for Bjy(2) it can be shown that two overlapping €ellipses
can be used to produce a pure dipole, or a pure quadrupole field.
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Pure Dipole Field Using Two Elliptical Conductors

S ———— =
QD

The field inside the “aperture” formed by two intersecting ellipses carrying
egual and opposite current densities is given by:

_ s 00 J m,J Xo_
Bin(2) = (a+b)§3§( ey iay - be§< > |ayH (a+D) congt.
MoJbXy _ _ _
By(2) = (@+D) = const.; B, (2)=0

This represents a pure dipole field. In practice, the sharp cornersin the current
blocks must be truncated. This gives rise to unacceptable higher harmonics
with this ssmple approach.
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Pure Quadrupole Field Using Two Elliptical Conductors

Y/

S bk
QD
+
(&

Y

The field inside the “aperture” formed by the two ellipses carrying equal and
opposite current densities and intersecting at right anglesis given by:

_omyd . 1_nyd(a- b) :
Bin(2)= ipl iy ==y <)
_ngd(a-b) . _myd(a- b)
= @y ¢ BT e

This represents a pure quadrupole field. The gradient is given by:

_aéTB 0 a&TBO myJ(a- ):constant
g'nx;a ‘ﬂyro“ (a+b)
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Generating a Pure 2m-Pole Field: The Cos(mq) Distribution

Let us consider acylindrical current sheet of y
radius a composed of thin filaments of Y| di=1,.cos(mf ).df
current flowing in the Z-dirction only.

The current density at any angle f is
assumed to be proportiona to cos(mf)
where mis anon-zero positive integer

dl = 1 cos(mf ).df

The complex field at any point can be
obtained by integrating the contributions

from small elements of width df , as shown

in the figure.
2p
2811000 & o™’
Bi,(2) =- —= exp(-inf)cos(mf )df
m() gzpago?1 iy P( ) cos(mf)
0
2p 2p
oros(nf )cos(mf )df =pdpy,; Cgin(nf)cos(mf )df =0
0 0
\ Biy(2)=- TR0 0%%0

Accordingly, the radial and the azimuthal components of the field are:
. m1 A

tee ¢ < amploodRe 0y
, é — = T B e C -
B (r,q) = é% %; @Rrem sin(mg) ; By(r,q) = é% 2 5 a g @ Ru

LMl

0

:  cog(mo)
(4]

These components represent a pure 2m-pole field. Sometimes, it is important
to know the field outside the current shell, which is given by:

2p
Bou (2) = ?%09 2+ & expin g ¢ doos(rt ) ‘%53—9
0

Thefield thusfals off as (1/r)™" outside the current shell.
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Field Dueto a Conductor of Polygonal Cross Section

Is the contribution to the contour integral from the j-th side of the polygon.
Thefirst termin I;(2) gives zero contribution when summed over al the sides,
and can be omitted in the expression for the field. The cross-sectional area
(needed to evaluate the current density) is given by:

N

1o
A=ZaA (X Yjs1- X))

=1

A conductor of arbitrary cross-section can also be approximated by a polygon

with a sufficiently large number of sides, and the above equations can be used
to evaluate field from such a conductor.
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A Current Filament Insidea Cylindrical Iron Yoke

AY
|
Ryoke K |
N\ R
X
My
mEm

By the method of images, the effect of the iron yoke on the field inside the
“aperture” of the yoke can be described by replacing it with an image current
given by:

R2 BT
ag= ok, o T 10 L o

a m +1g

The coefficient of the 2n-pole term in the multipole expansion of the field is:

.N-1é . 2N

aamy| GaR; = - 16ee 0
C(n)exp(-inan):-% I:g ef(:) §1+aEmf 1:f‘ a = Uexp(-inf)

203k a 5 € &m +1oERgep U

The presence of yoke results in an increase of field in the aperture. Since
a < Ryoe the enhancement in field reduces with the order of the multipole, n.
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Allowed Harmonics in a “2m-pole” Magnet

The current distribution in a “2m-pole” magnet has a m-fold rotational
symmetry. In addition, the current distribution is antisymmetric under a
rotation by (p/m) radians, as shown in the figure. Certain harmonics in the

multipole expansion vanish under these conditions, leading to only a selected
group of harmonics being allowed for the magnet.

Y

3p/M 3 +2p/ m) = J(F )

X
(2m- )p/m
(2m-2)p/m
2p . p/m _ 2p/m _
C(nyexp(ina, ) p oJ(F)e™df = gd(f)e™ df + gJ(f)e™ df + ---
0 0 p/m
p/m . . . _
C(n)exp(inan) u bJ(f )elnf [1- elnp/m+eZ|np/m+ L e|(2m— 1)p/m]df
0
éo/\m - U éq- e2inp U
ueé od(f)e df e ——mu
éo oel+er g

This vanishes unless n is an odd multiple of m. For a dipole magnet (m=1),

only terms with n=1,35,... are alowed. For a quadrupole magnet (m=2),
termswith n = 2,6,10,... are allowed and so on.
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“Top-Bottom” Symmetry in the Current Distribution

A
Y

1N

The current density satisfies J(f) = J(2p-f), as shown in the figure. The
normal and skew multipoles are given by:

2p . P . _ p _ _
C(n)exp(ina,) p pd(f)e™ df = §a(f)e™ +e'”(2p'f)]df = 9J(f )[e'”f +ginf ]df
0 0 0
p
\ C(n)exp(ina,) K oJ(f)cos(nf )df
0

The result of integration has no imaginary part in this case. This implies that
al the skew terms vanish as a result of the “top-bottom” symmetry in the
current distribution.

TorP-BOTTOM SYMMETRY IN CURRENT DENSITY
P ALL SKEW TERMSARE ZERO.
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“Top-Bottom” Anti-Symmetry in the Current Distribution

/
Y

\

1N

The current density satisfies J(f) = =J(2p- f), as shown in the figure. The
normal and skew multipoles are given by:

2p ) p
C(n)exp(ina,) p pd(f)e™ df = §a(f
0 0
p
\ C(n)exp(ina,) W ioJ(f)sin(nf )df
0

The result of integration has no real
normal terms vanish as a result of
current distribution.

o S
[e - €@ Dt = a(r e - & o
0

part in this case. Thisimplies that all the
the “top-bottom” anti-symmetry in the

ToP-BOTTOM ANTI-SYMMETRY IN CURRENT DENSITY
P ALL NORMAL TERMSARE ZERO.
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“Left-Right” Symmetry in the Current Distribution

A

The current density satisfies  J(f) = J(p-f), as shown in the figure. The
normal and skew multipoles are given by:

2p . p/2 _ . p/2 . .
C(n)exp(ina,)p oJ(F)e™df = §I(f ) e™ +e'”<p'f)]df = §I(f )[emf +(-)"e N |of
0 -p/2 -p/2

p/2
C(n)exp(ina,) i oJ(f)sin(nf)df for ODD n
-p/2

/2
C(n)exp(ina ) 1 p@J(f)cos(nf )df for EVEN N

-pl/2
The result of integration has no real part for odd multipoles and has no
imaginary part for even multipoles. Thisimpliesthat al the odd normal terms
(such as normal dipole, normal sextupole, etc.) and all the even skew terms
(such as skew quadrupole, skew octupole, etc.) vanish as a result of the “left-
right” symmetry in the current distribution.

LEFT-RIGHT SYMMETRY IN CURRENT DENSITY

P ODD NORMAL TERMSARE ZERO [2(2k+1)-POLE]
EVEN SKEW TERMSARE ZERO [2(2K)-PoOLE]
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“Left-Right” Anti-Symmetry in the Current Distribution

A

The current density satisfies J(f) = =J(p-f), as shown in the figure. The
normal and skew multipoles are given by:

QI - € Dlaf = IO - (-n"e ™ o

2p .
C(n)exp(ina,) 1 oJ(f)e™ df =
0 -p/2 -p/2

p/2
C(n)exp(ina,) i oJ(f)sin(nf)df for EVEN n
-p/2

/2
C(n)exp(ina ) 1 ID(‘)J(f)cos(nf )df for ODD n

-p/2
The result of integration has no real part for even multipoles and has no
imaginary part for odd multipoles. Thisimplies that all the even normal terms
(such as normal quadrupole, normal octupole, etc.) and all the odd skew terms
(such as skew dipole, skew sextupole, etc.) vanish as a result of the “left-
right” anti-symmetry in the current distribution.

LEFT-RIGHT ANTI-SYMMETRY IN CURRENT DENSITY

P EVEN NORMAL TERMSARE ZERO [2(2k)-POLE]
ODD SKEW TERMSARE ZERO [2(2k+1)-POLE]
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Two-Dimensional Behaviour of Integral Field

In magnets of afinite length, the two dimensional representation of the field
is valid only in the body of the magnet, sufficiently away from the ends. In
regions near the ends of the magnet, the field is three dimensional and the
usual multipole expansion is no longer valid. However, for most practical
purposes, one is interested in the integral of the field (and its various
derivatives) over the length of the magnet. Also, a measuring coil of finite
length only measures integral of the field over its length. It can be shown that
the integral field essentially behaves as a two dimensional field provided the
integration is carried out over an appropriate region.

In general, for three dimensional fields, the scalar potential satisfies Laplace's
eguation:

a=0

Aqr2 2 2
% (kYD) = 6 Fzm L Fzm +3 Fzm =
e Tx Ty 1z ¢

Integrating along the Z-axis from Z; to Z,, we get:

Zz Zy
5 Gq2 2 2 o L q2
ggﬂ F2m+ﬂ F2m+ﬂ |:mudz—gﬂ—+ ﬂzazoFm(x y,z)dz+0 1 Fzmdz:O
6 & Tx Ty 26 & Wi
y4) V4]

_ Z3
We define the z-integrated scalar potential as F (X, Y) = oF n(x,y,2)dz,

4

NF m , TP ml__eTF i
VR 17 A
1

If the region of integration is so chosen that the Z-component of the field is
zero at the boundaries of this region, then the right hand side vanishes and the
average scalar potential satisfies the two dimensional Laplace’s equation. For
example, the points Z; and Z, could both be chosen well outside the magnet
on opposite ends. Alternatively, one could choose Z; well outside the magnet
and Z, well inside the magnet, where the field is again two dimensional.
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Transformation of Field Parametersunder Displacement of Axes

The expansion parameters [C(n),
an] or [B,, A, depend on the
choice of the reference frame.

Let us consider a frame
X’ =Y’ which is displaced from a
frame X-Y by z, asshown in the
figure. The field parameters are
denoted by [C(n), a,] or By, A
in the X-Y frame and by
[C(n),ap] or [BE, ALl in the
X' -Y’ frame.

Since the Cartesian components
of B are the same in the two

\
Y Y'Z=X+1y
Z=X+1y

=(X+X) + 1(Y+Yp)

X @ Zo = Xot 1Y

y = roexp (i X)
y
% O N
>t >
Xl
AN I
X Yo
@) | >
X

reference frames, we have (with the “US Convention”):

B(z() = By +iBy¢ = By +iB,

g ez 0 £ &+ 7,0
= 8 (B +iAdg-—% = & (B iAdg 0+
k=0 &0 k=0 Re o
& X Kl aezq;onaezo 6 "
=a (B +iAda T T
a B HAIA G TR 5 ERe 5
y éy k-nuaE ..Nn
o AO k! & 0 € z7¢ 0
=8 SR B+iA) et o
n:08<:n n (k- n) Rrefﬂ 0 e 9
3
= a (qu:_HAY(P)g—:
g
g & s &
wherewehaveused theidentity & A n=aA a M
k=0 n=0 n=0 k=n
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Transformation of Field Parametersunder Displacement of Axes

A A .
Y Y'rZ=xX+1y
Z=X+1y
o ST+
X [ AR z0= xg+ iy,
y = roexp (i X)
y
%O >
A >,
X
O I
X 1Yo
® | >
X
¥ 6 Kk uf36<o+iyof>k_n Us
B¢ +1A¢) = B, +1A )a ' - T ' 'n30
(B¢ +iAL) ka:-n( K Ak)gn!(k-n)!é Re 5 NOTATION

In the European notation, the indices of the B's and the A's in the above
equation are increased by one. Hence, we may rewrite the above equation as:

EUROPEAN

.k-n
3 e (k-1 B+iyed
! = ;N1 NotaTiON

(BE+iAN= & (Be+iAdg — — S e %

k=n

The transformation for the Amplitude and phase of the 2n-poleterm is:

| g | k-1 BB +iygd
C((n)exp(-maﬁ):a[C(k)exp(-|kak)]§(n_(l)!(k)_ n)!, oRJ:e'fyo% 'n31l

k=n

Coefficients of any particular order in the displaced frame are given by a
combination of ALL THE TERMS OF EQUAL OR HIGHER ORDER in the undisplaced

frame. This effect is referred to as the FEED DowN of harmonics.
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Transformation of Field Parametersunder Rotation of Axes

‘ AY By_ B
X-Y  :Origina Frame N -

X’ -Y' : Rotated Frame
f = Rotation angle
z=r.exp(iq)

Z =r.exp(iq )

q=q +f

z=27 exp(if)

By¢= By cosf +Bysinf ;  B,s=-B,sinf +B, cosf

B(20) = By¢+ By = (B, +iB,) exp(if )

5 - _
=a [B, +1A] G—= exp(if)
n=0 Re o
g : & z¢ én , 3 ) x z¢ én
=alB,tiA] &——= expli(n+Df]= q [B$+iAG] é—:
n=0 Re & =0 Re o
(Bg +iAQ) = (B, +iA))expli(n+D)f]; n3 0 “US NOTATION”

(B +i1A) = (B, +iA,)exp(inf); n31 “EuroPEAN NOTATION”
C(n)exp(- inaf) = C(n)exp(- ina,)exp(inf )
or, C(n)=C(n); af=a,-f; n31

A rotation of axes causes NO FEeD DowN of harmonics, but causes mixing of
Normal and Skew components of a given harmonic.
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Transformation of Field Parametersunder Reflection of Axes

If a magnet is viewed from an end vy Yy}
which is opposite to the end from ’
which the field parameters are f“
measured, then appropriate transfor-
mations must be applied to the field I B
parameters.  This situation corre- zZF = -7 o

sponds to the figure here, where the B, = —By
X' axis points away from the X-
axis and the Y’ -axis coincides with <«— >
the Y -axis. X 0,0° X

ZF=X- 1y =- X(- iy(=- z(

By¢+iBy¢=By - 1B, =(By +iB,)*

8 riny 220
= | * T
nao éRref @
5 ¥ ¢ O
= B, - 1 - = B ——
na:O( iA)(-D" éRref - nao( $+1A%) g o:
B¢=(-1)"B,; A¢=(-1)™A,; n30 US NOTATION

Bt=(-1)""B,; A¢t=(-)"A,; n31 Eurorean NOTATION

_a&po

Cak)=C(k): aG1=-apy ag=g 2-ani ko1

There is NO Feed Down of harmonics, or mixing of Norma and Skew
components under this transformation. Simply, the signs of alternate normal
and skew components are changed. The terms that change sign are the skew
dipole, the normal quadrupole, the skew sextupole, the normal octupole, and
SO on.
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