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Multipole Expansion of Two Dimensional Field in Free Space

In free space (no true currents), the magnetic field H (= B/µ0) satisfies:

∇ × = ⇒ ∇ × ⇒ = −∇ΦH B B0       = 0    m ,

The magnetic induction, B = µ0H  always satisfies  ∇.B = 0. Therefore,

∇ =2 0Φm            LAPLACE’S EQN. FOR SCALAR POTENTIAL

In cylindrical coordinates, and for no  z-dependence (2-D fields):
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writing  Φm(r,θ) = R(r)Θ(θ),  and imposing the conditions
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we get the solution of the Laplace’s equation:
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C(n)  and  αn  are constants and  Rref  is an arbitrary REFERENCE RADIUS,
typically chosen to be 50-70% of the magnet aperture.

Φm =  MAGNETIC SCALAR
POTENTIAL.
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Multipole Expansion of Two Dimensional Field in Free Space
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From the cylindrical components, we can get the Cartesian components:
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Define a Complex function,  B(z) = By(x, y) + iBx(x, y) of the complex
variable, z = x + iy = r.exp(iθ):
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Normal and Skew Components of the Two-dimensional Field

The complex field B(z) is given by:
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The real and the imaginary parts of the expansion coefficients are defined as
the NORMAL and the SKEW Components:

C(n)exp(–inαn) = (2n-POLE NORMAL TERM) + i(2n-POLE SKEW TERM)

Unfortunately, the index  n  in the expansion coefficient is not the same as the
corresponding power (n–1) of  z  in the above equation. This has led to two
different conventions in denoting the normal and the skew terms:
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In terms of the normal and skew components, the expansion of  B(z) is:
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The “U.S. Convention” leads to a more elegant looking equation without the
(n–1) in the powers, whereas the “European Convention” retains the simple
relationship between the n-th term and the number of poles it represents.

For work done in the US for the LHC project, the "European Convention" is
generally followed.
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 Normal and Skew Components as Field Derivatives

The complex field is given by:
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where Bn and An are the Normal and the Skew Components.

It is possible to assign a physical significance to the normal and the skew
components in terms of the gradients of the field. It is easy to show that
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The normal components of various orders are thus related to the derivatives
of corresponding orders of the vertical component of the field along the
midplane of the magnet. Similarly, the skew components of various orders are
related to the derivatives of corresponding orders of the horizontal component
of the field along the midplane of the magnet.
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Examples  of  Normal  and  Skew  Magnets
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Fractional Field Coefficients or Multipoles

The expansion of the complex field is given by:
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The real and the imaginary parts of the expansion coefficients are referred to
as the Normal and the Skew components respectively. These expansion
coefficients lead to the actual field strength in the magnet and are dependent
on the excitation level of a magnet. In accelerator applications, one is often
interested in the shape of the field, rather than its absolute magnitude. This is
done by expressing the various harmonic terms in the expansion as a fraction
of a REFERENCE FIELD, Bref :
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Generally, this reference field is chosen as the strength of the most dominant
term in the expansion. For a 2m-pole magnet, it is expected that the term for
n = m will be the most dominant one. Hence, Bref may be chosen to be equal
to C(m).

The Normal and Skew 2n-pole fractional field coefficients, or “MULTIPOLES”
are defined as:
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In a typical accelerator magnet, these coefficients are of the order of 10-4. The
coefficients are therefore often quoted after multiplying by 104. With this
multiplicative factor, the values of the multipoles are said to be in “units”.
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Analyticity  of  the  Complex  Field  B(z)

Any function of complex variable  z  given by:

F(z) = U(x, y) + i V(x, y)

is an Analytic Function of  z  if the real and the imaginary parts of the
function satisfy the Cauchy-Riemann conditions:
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An analytic function of  z  can be shown to be a function of  z  alone, and not
its complex conjugate,  z*.  For the case of the 2-dimensional field in a source
free region, Maxwell’s equations give:
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The Maxwell’s equations are identical to the Cauchy-Riemann conditions if
we choose  U(x, y)  = By(x, y)  and  V(x, y)  = Bx(x, y). Thus the function
B(z) = By(x, y) + i Bx(x, y) defined earlier is an analytic function of the
complex variable, z.  It should be noted that the function

Bx(x, y) – iBy(x, y)     IS ALSO AN ANALYTIC FUNCTION OF  z

However,

Bx(x, y) + iBy(x, y)     IS NOT AN ANALYTIC FUNCTION OF  z

An analytic function of z can be expressed as a power series in z, as we have
already seen for the case of  B(z) = By(x, y) + i Bx(x, y). The analyticity is
useful in dealing with two dimensional problems in magnetostatics.
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The Complex Potential

We define a complex field, B(z) as:
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which is an analytic function of the complex variable z = x + iy. Accordingly,
we define a COMPLEX POTENTIAL W(z) such that:
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It is clear from the above that the real part of the complex potential is the
(only) component, Az,  of the vector potential A, and the imaginary part of the
complex potential is the magnetic scalar potential, Φm. The complex potential
therefore contains a complete description of any field problem.



USPAS on Superconducting Accelerator Magnets, Houston, TX, USA, Jan. 22-26, 2001
- 9 -

Complex Field due to a Current Filament at the Origin
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We first consider the simplest case of an infinitely long current filament
located at the origin, carrying a current I along the positive Z-axis, as shown
in the figure. At any point P located at (r, θ), the magnetic field has the same
magnitude along a circle of radius r and is directed along the azimuthal
direction.  From Ampère’s law:
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The Complex Potential is therefore given by:
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The real and the imaginary parts of W(z) give the vector potential, Az, and the
scalar potential, Φm, respectively.



USPAS on Superconducting Accelerator Magnets, Houston, TX, USA, Jan. 22-26, 2001
- 10 -

Current  Filament  at  an  Arbitrary  Location
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Let us consider the magnetic induction B at a point P(r, θ) due to an infinitely
long current filament located at the point  a = aexp(iφ) =ax + iay . In a frame
X’-Y’ with axes parallel to X-Y and having origin at the current filament,
the complex field is given by
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The complex potential is given by:
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The real and the imaginary parts of the complex potential give the component,
Az , of the vector potential and the magnetic scalar potential, Φm, respectively.
Knowing the field due to a current filament at an arbitrary location, we can
determine the field due to any arbitrary distribution of current by
superposition.
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Multipole Expansion of Field due to a Current Filament

The complex field at any point P due to
a current filament at z = a is given by:
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This expression is valid for all values of
z in the complex plane and is singular at
z = a. We are interested in a multipole
expansion of the complex field in the
form of a power series :
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Clearly, such an expansion can not be valid for all values of z. The complex
field has a singularity at z = a  and the series diverges for |z|→∞. Let us
divide the entire X-Y plane into two regions – an “INSIDE” region extending
to  r < a  and an “OUTSIDE” region for  r > a. The general expression for the
complex field can be expanded as a different power series in each of these
two regions.  Let us consider the “inside” region first.
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which is in the desired form.
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Multipole Expansion of Field due to a Current Filament
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The complex field in the  “INSIDE”  region is given by:
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The NORMAL and SKEW components of the 2n-pole field are (in US notation):
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In the European notation, the 2n-pole components are denoted by:
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Multipole Expansion of Field due to a Current Filament
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For the “OUTSIDE” Region, we can expand the complex field as:
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This series is NOT in the usual form of the multipole expansion for the field
inside a magnet aperture. However, it can be seen that this expansion
converges for |z|→∞ to  Bout(z) → [µ0I/(2πz)]  as is expected.
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Cylindrical  Current  Sheet  of  Uniform  Current  Density

Let us consider a cylin-
drical current sheet of
radius a carrying a total
current of I. The current is
assumed to be distributed
uniformly and flowing only
along the Z-direction.

The complex field at any
point can be obtained by
integrating the contribu-
tions from small elements
of width dφ, as shown in
the figure. The expansion
of field from a filament for
r < a is different from that
for r > a..

The field due to the current element  dI = (I.dφ)/(2π) at any point inside is:
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Similary, for any point outside the cylindrical shell, we have
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Thus, for points outside, a cylindrical shell of uniform current density behaves
as a current filament located at the origin. The field is zero inside the cylinder.
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Solid  Cylindrical  Conductor with  Uniform  Current  Density

We consider a solid cylinder
of radius a carrying a total
current I. The field at any
point can be obtained by
dividing the solid cylinder
into thin shells. For any
point outside the cylindrical
conductor, all such shells
contribute. For any point P
at a radius r < a, as shown
in the figure, only shells
with radii ξ < r contribute.

Total current carried by a
thin shell of radius ξ and
thickness dξ is

dI J d J
I

a
= =. ;2 2πξ ξ

π
   where     is the current density

For any point inside the cylinder, the total complex field is:
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where we have used the fact that r2 =zz*.  For any point outside the solid
cylinder, the total complex field is:
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It should be noted that  Bin(z) is a function of z*, and hence is NOT an
analytic function of z.
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Two Overlapping Cylinders: Pure Dipole Field

–x
0/

2

+x
0/

2 X

Y

zin

1 2
z1 z2

–J+J

O

If two cylinders carrying equal and opposite current densities +J and –J are
separated along the X-axis by a distance x0, then the region of overlap carries
no current, and may be replaced by a region of free space. For any point zin in
this “aperture”, the complex field can be obtained from the expression for
Bin(z) for a single cylinder:
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The complex potential is thus a constant throughout the “aperture”. Since the
complex potential is given by By + iBx, we get in this case:

B
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A pure dipole field is also produced by two overlapping cylinders with
elliptical cross sections. Similarly, two ellipses placed at right angles produce
a pure quadrupole field. In practice, the ends of the two current halves must
be truncated, which gives rise to unacceptably large higher harmonics.
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Solid Conductor of Arbitrary Shape:  Integral Formula
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Let us consider an infinitely long solid conductor of arbitrary cross section
defined by the contour C.  Inside the region of the conductor, the Maxwell’s
equations give:
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For a constant current density, Jz(x,y) = J, it can be shown that the function:
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J J

y x
µ µ0 0

2 2
is an analytic function of z.  This function can be evaluated as a contour
integral over the boundary of the conductor as:
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π
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4 2
    for  

Bout(z) is the same as F(z) for z = zout.

[Reference:  R.A. Beth, J. Appl. Phys. 38(12), 4689-92 (1967)]
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Solid Conductor of Arbitrary Shape:  Integral Formula
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Field at P(z) due to a triangular wedge PAB is given by:
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The total field at P(z) due to the entire conductor is therefore,
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This applies to all points, whether inside or outside the conductor.

[Reference:  R.A. Beth, J. Appl. Phys. 40(12), 4782-6 (1969)]



USPAS on Superconducting Accelerator Magnets, Houston, TX, USA, Jan. 22-26, 2001
- 19 -

Solid Elliptical Conductor with Uniform Current Density

X

Y

a

b

J
Bin

Bout

The field inside and outside the elliptical conductor shown in the figure can
be obtained using the integral formula for 2-D fields [R.A. Beth, J. Appl.
Phys. 38(12), 4689-92 (1967)]. The result is:

B z B z
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µ µ
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2 2 2

For a circular conductor, b = a,  and these expressions reduce to:

B z z* B z
zin

o
out

oJ J a
( ) ; ( )= 





= 














µ µ
2 2

2
          CIRCULAR CONDUCTOR

Using the expression for Bin(z) it can be shown that two overlapping ellipses
can be used to produce a pure dipole, or a pure quadrupole field.
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Pure Dipole Field Using Two Elliptical Conductors
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The field inside the “aperture” formed by two intersecting ellipses carrying
equal and opposite current densities is given by:
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This represents a pure dipole field. In practice, the sharp corners in the current
blocks must be truncated. This gives rise to unacceptable higher harmonics
with this simple approach.
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Pure Quadrupole Field Using Two Elliptical Conductors
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The field inside the “aperture” formed by the two ellipses carrying equal and
opposite current densities and intersecting at right angles is given by:
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This represents a pure quadrupole field. The gradient is given by:
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Generating a Pure 2m-Pole Field:  The Cos(m θ) Distribution

Let us consider a cylindrical current sheet of
radius a composed of thin filaments of
current flowing in the Z-dirction only.
The current density at any angle φ is
assumed to be proportional to cos(mφ)
where m is a non-zero positive integer

dI I m d= 0 cos( ).φ φ

The complex field at any point can be
obtained by integrating the contributions
from small elements of width dφ, as shown
in the figure.
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Accordingly, the radial and the azimuthal components of the field are:
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These components represent a pure 2m-pole field.  Sometimes, it is important
to know the field outside the current shell, which is given by:
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The field thus falls off as  (1/r)m+1  outside the current shell.

a

φ
X

Y

dφ

dI=I0.cos(mφ).dφ

Bin(z) Bout(z)

dI
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Field Due to a Conductor of Polygonal Cross Section
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is the contribution to the contour integral from the j-th side of the polygon.
The first term in Ij(z) gives zero contribution when summed over all the sides,
and can be omitted in the expression for the field. The cross-sectional area
(needed to evaluate the current density) is given by:

)(
2
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1
1

1 jj

N

j
jj yxyxA +

=
+∑ −=

A conductor of arbitrary cross-section can also be approximated by a polygon
with a sufficiently large number of sides, and the above equations can be used
to evaluate field from such a conductor.
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A Current Filament Inside a Cylindrical Iron Yoke
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By the method of images, the effect of the iron yoke on the field inside the
“aperture” of the yoke can be described by replacing it with an image current
given by:
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The coefficient of the 2n-pole term in the multipole expansion of the field is:
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The presence of yoke results in an increase of field in the aperture. Since
a < Ryoke, the enhancement in field reduces with the order of the multipole, n.
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Allowed  Harmonics  in  a  “2m-pole”  Magnet

The current distribution in a “2m-pole” magnet has a m-fold rotational
symmetry. In addition, the current distribution is antisymmetric under a
rotation by (π/m) radians, as shown in the figure. Certain harmonics in the
multipole expansion vanish under these conditions, leading to only a selected
group of harmonics being allowed for the magnet.
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This vanishes unless n is an odd multiple of m. For a dipole magnet (m=1),
only terms with n = 1,3,5,... are allowed. For a quadrupole magnet (m=2),
terms with n = 2,6,10,... are allowed and so on.
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“Top-Bottom”  Symmetry  in  the  Current  Distribution

J(φ)

φ

2π−φ

J(2π−φ)
= J(φ)

X

Y

The current density satisfies   J(φ) = J(2π−φ), as shown in the figure. The
normal and skew multipoles are given by:
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The result of integration has no imaginary part in this case. This implies that
all the skew terms vanish as a result of the “top-bottom” symmetry in the
current distribution.

TOP-BOTTOM  SYMMETRY  IN  CURRENT  DENSITY

⇒    ALL SKEW TERMS ARE ZERO.
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“Top-Bottom”  Anti-Symmetry  in  the  Current  Distribution

J(φ)

φ

2π−φ

J(2π−φ)
= –J(φ)

X

Y

The current density satisfies   J(φ) = –J(2π−φ), as shown in the figure. The
normal and skew multipoles are given by:
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The result of integration has no real part in this case. This implies that all the
normal terms vanish as a result of the “top-bottom” anti-symmetry in the
current distribution.

TOP-BOTTOM  ANTI-SYMMETRY  IN  CURRENT DENSITY

⇒    ALL  NORMAL TERMS ARE ZERO.
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“Left-Right”  Symmetry  in  the  Current  Distribution

J(φ)

φ
π−φ

J(π−φ )
= J(φ)

X

Y

The current density satisfies   J(φ) = J(π−φ), as shown in the figure. The
normal and skew multipoles are given by:
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The result of integration has no real part for odd multipoles and has no
imaginary part for even multipoles. This implies that all the odd normal terms
(such as normal dipole, normal sextupole, etc.) and all the even skew terms
(such as skew quadrupole, skew octupole, etc.) vanish as a result of the “left-
right” symmetry in the current distribution.

LEFT-RIGHT  SYMMETRY  IN  CURRENT DENSITY

   ⇒  ODD  NORMAL  TERMS ARE  ZERO  [2(2k+1)-POLE]
EVEN  SKEW  TERMS ARE  ZERO [2(2k)-POLE]
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“Left-Right”  Anti-Symmetry  in  the  Current  Distribution

J(φ)

φ
π−φ

J(π−φ)
= –J(φ)

X

Y

The current density satisfies   J(φ) = –J(π−φ), as shown in the figure. The
normal and skew multipoles are given by:
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The result of integration has no real part for even multipoles and has no
imaginary part for odd multipoles. This implies that all the even normal terms
(such as normal quadrupole, normal octupole, etc.) and all the odd skew terms
(such as skew dipole, skew sextupole, etc.) vanish as a result of the “left-
right” anti-symmetry in the current distribution.

      LEFT-RIGHT  ANTI-SYMMETRY  IN  CURRENT DENSITY

⇒  EVEN  NORMAL  TERMS ARE  ZERO   [2(2k)-POLE]
     ODD  SKEW  TERMS ARE  ZERO     [2(2k+1)-POLE]



USPAS on Superconducting Accelerator Magnets, Houston, TX, USA, Jan. 22-26, 2001
- 30 -

Two-Dimensional Behaviour of Integral Field

In magnets of a finite length, the two dimensional representation of the field
is valid only in the body of the magnet, sufficiently away from the ends. In
regions near the ends of the magnet, the field is three dimensional and the
usual multipole expansion is no longer valid. However, for most practical
purposes, one is interested in the integral of the field (and its various
derivatives) over the length of the magnet. Also, a measuring coil of finite
length only measures integral of the field over its length. It can be shown that
the integral field essentially behaves as a two dimensional field provided the
integration is carried out over an appropriate region.

In general, for three dimensional fields, the scalar potential satisfies Laplace’s
equation:
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Integrating along the Z-axis from Z1 to Z2, we get:
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We define the z-integrated scalar potential as  ∫Φ Φm m
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If the region of integration is so chosen that the Z-component of the field is
zero at the boundaries of this region, then the right hand side vanishes and the
average scalar potential satisfies the two dimensional Laplace’s equation. For
example, the points Z1 and Z2 could both be chosen well outside the magnet
on opposite ends. Alternatively, one could choose Z1 well outside the magnet
and Z2  well inside the magnet, where the field is again two dimensional.
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Transformation of Field Parameters under Displacement of Axes

The expansion parameters [C(n),
αn] or [Bn, An] depend on the
choice of the reference frame.

Let us consider a frame
X’-Y’which is displaced from a
frame X-Y by  z0, as shown in the
figure. The field parameters are
denoted by [C(n), αn] or [Bn, An]
in the X-Y frame and by
[ ( ), ]C n n′ ′ α  or [ , ]′ ′B An n  in the
X’-Y’frame.

Since the Cartesian components
of  B  are the same in the two
reference frames, we have (with the “US Convention”):

B z

z z + z

z z

z z

( )

( ) ( )

( )
!

!( )!

( )
!

!( )!

′ = + = +

= +








 = +

′









= +
−

′



















= +
−

























′

′ ′

=

∞

=

∞

=

∞

=

−

=

∞ −

=

∞

∑ ∑

∑ ∑

∑∑

B iB B iB

B iA
R

B iA
R

B iA
k

n k n R R

B iA
k

n k n R

y x y x

k
k

k
ref

k

k
k

k
ref

k

k
k

k
n

k

ref

n

ref

k n

k k
k n ref

k n

n

0 0

0

0 0

0

0

0 R

B iA
R

ref

n

n
n n

ref

n











= ′ + ′
′









=

∞

∑ ( )
0

z

where we have used the identity    
n

k

kn
k k n

kn
n

t t
==

∞

=

∞

=

∞

∑∑ ∑∑=
00 0

X

Y

X '

Y '

O

O'

r 0

x0

y0ξ

z = x + iy
=(x'+x0) + i (y'+y0)

z' = x' + iy'

x'
x

y'
y

z0 = x0+ iy0

      = r0. exp (i  ξ)
     



USPAS on Superconducting Accelerator Magnets, Houston, TX, USA, Jan. 22-26, 2001
- 32 -

Transformation of Field Parameters under Displacement of Axes
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In the European notation, the indices of the B’s and the A’s in the above
equation are increased by one. Hence, we may rewrite the above equation as:
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The transformation for the Amplitude and phase of the 2n-pole term is:
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Coefficients of any particular order in the displaced frame are given by a
combination of ALL THE TERMS OF EQUAL OR HIGHER ORDER in the undisplaced
frame. This effect is referred to as the FEED DOWN of harmonics.

US
NOTATION

EUROPEAN
NOTATION
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Transformation of Field Parameters under Rotation of Axes

X-Y      : Original Frame
X’-Y’ : Rotated Frame
φ  =  Rotation angle
z = r.exp(iθ)
z’ = r.exp(iθ’)
θ = θ’ + φ

z = z’exp(iφ)

B B Bx x y′ = +cos sinφ φ  ;    B B By x y′ = − +sin cosφ φ
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A rotation of axes causes NO FEED DOWN of harmonics, but causes mixing of
Normal and Skew components of a given harmonic.
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Transformation of Field Parameters under Reflection of Axes

If a magnet is viewed from an end
which is opposite to the end from
which the field parameters are
measured, then appropriate transfor-
mations must be applied to the field
parameters.  This situation corre-
sponds to the figure here, where the
X’ axis points away from the X-
axis and the Y’-axis coincides with
the Y-axis.
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There is NO Feed Down of harmonics, or mixing of Normal and Skew
components under this transformation. Simply, the signs of alternate normal
and skew components are changed. The terms that change sign are the skew
dipole, the normal quadrupole, the skew sextupole, the normal octupole, and
so on.
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