

Overall Plan of Work and Status of EIC IR Cable Magnets

Ramesh Gupta March 8, 2022

Overall Plan of Work

- Choose the cable for all cable magnets. The chosen cable must have the same width for all cable magnets. The cable, however, may have two keystone angles.
- Perform an integrated review of all cable magnet designs at 2K and finalize the cable. Current choice is LHC ~15 mm wide cable (complete in about a week).
- Perform cross-section design of all five cable magnets (complete in about a month).
- Perform initial 3-d end design of all magnets with ROXIE and OPERA/COMSOL (complete in about 2 months from now, and at least one by the end of April)
- Provide info to start mechanical (ANSYS) analysis for these initial designs
- In parallel optimize the ends for
 - > Reducing cross-talk
 - > Improving the layout of the end blocks/turns (cable orientation, strain energy, etc.)
 - > Reducing peak fields (increasing margin)
- This parallel approach should help complete the tasks within the schedule of MoU
 even if the final magnetic designs have evolved from the ANSYS models used

Status and Immediate Plans

- Review summary of the previous 2 K designs (Presentation today by Anis)
- Other work performed since the last MOU (Presentation today by Ramesh)
 - Initial design of B1pF at 2 K with LHC type ~15 mm wide cable
 - Initial design of B1ApF at 2 K with LHC type ~15 mm wide cable
- Future work on the cable magnets
 - Meetings for knowledge transfer with Febin and Mithlesh (couple of weeks ago) to optimize cross-section with ROXIE (others are expert already)
 - Febin to work on B1pF to further optimize (can be another magnet)
 - Mithlesh to work on B1ApF to further optimize (can be another magnet)
 - Distribution of work to optimize other magnets and get more expertise with ROXIE and finer details of design optimization

LHC Style Cable used in B1pF & B1ApF (can still be changed, but to be fixed soon)

➡ Cable Definition No Name Cable Geom. Strand Filament Insul Quench Mat. T_o Comment Trans 1 EICLHC2KA EICLHC01A 2 LHC INNER FOR EIC STREIC1 NBTII ALLPOLYIL TRANS1 NONE 1 EICLHCR2K EICLHC01R ALLPOLYIL TRANS1 2 LHC INNER FOR EIC STREIC1 NBTII NONE 2 EICLHC2K ALL POLYTI TRANS1 FTCLHC01 STREIC1 NBTII NONE 2 LHC INNER FOR FIC CIDETCA ALL DOL VII TOAKO4 NIDITTT KICKIE A OLLUC THREE COD CIC

(†)	Cab]	le Geometry						
	No	Name	height	width_i	width_o	ns	transp.	degrd Comment
	6	EICLHC01	15.1	1,786	2,014	28	115	5 LHC CABLE I
	7	EICLHC01A	15.1	1,814	1.986	28	115	5 LHC CABLE I
	7	EICLHC01R	15.1	1.9	1,9	28	115	5 LHC CABLE I

2.064

1.598

28

36

1.736

1.362

Νо	Type		NCab	X	Y	а	Current Cable name	N1	N2 Imag	Turr
1	Cos	•	15	150	0,1	0	-8050 EICLHC2KA ▼	2	30 0	
2	Cos	▼	25	150	15	15	-8050 EICLHC2KA ▼	2	30 0	
3	Cos	•	15	150	35	35	-8050 EICLHC2KA ▼	2	30 0	
4	Cos	•	10	150	55	55	-8050 EICLHC2KA ▼	2	30 0	
5	Cos	V	5	150	70	70	-8050 EICLHC2KA ▼	2	30 0	

115

100

8 CABLEO1

9 CABLEO2

15.1

15.1

Ramesh Gupta

5 MB INNER Li

5 MB OUTER Li

CDR Parameters and Design

Table 6.8: Parameters of the B1PF magnet.

Parameter	Value
Magnetic length [m]	3
Maximum dipole field [T]	3.4
Aperture [m]	0.262
Required field quality [%]	0.01
Coil width [m]	0.34
Coil height [m]	0.34
Superconductor Type	NbTi
Current density [A/mm ²]	241
Cu:Sc ratio	1.3
Temperature [K]	4.2
Peak field wire [T]	4.37
Magnetic energy [MJ]	1.36
Ampere turns [MA·t]	1.16
Margin loadline [%]	58

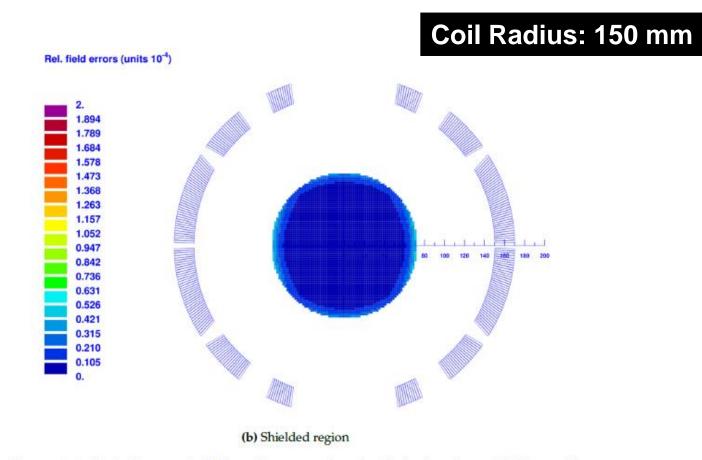
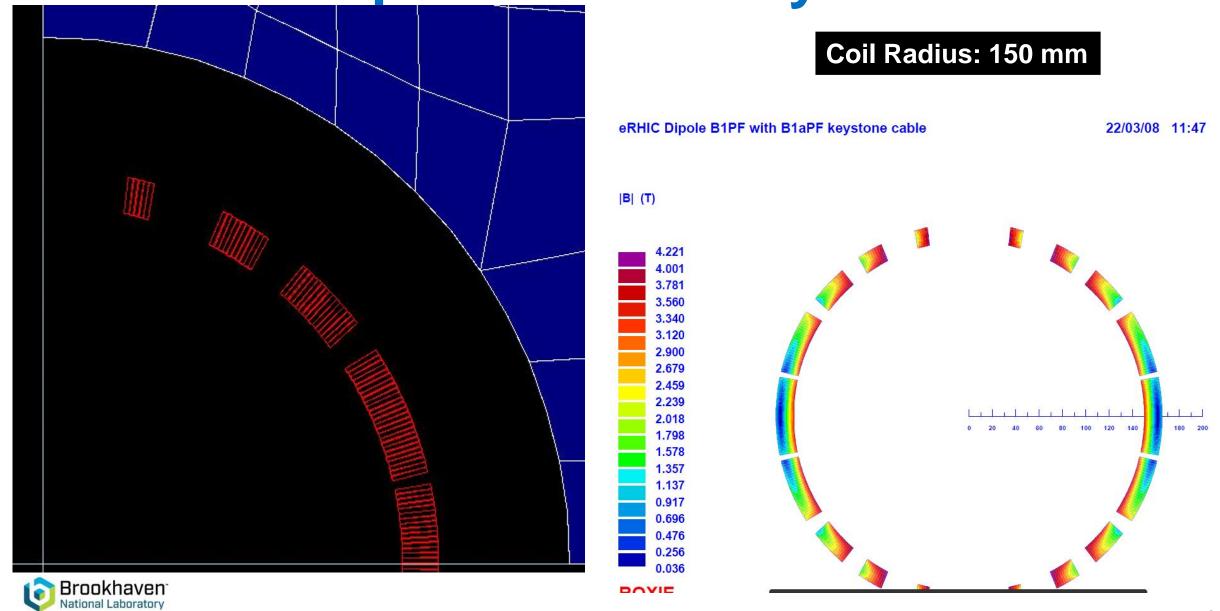
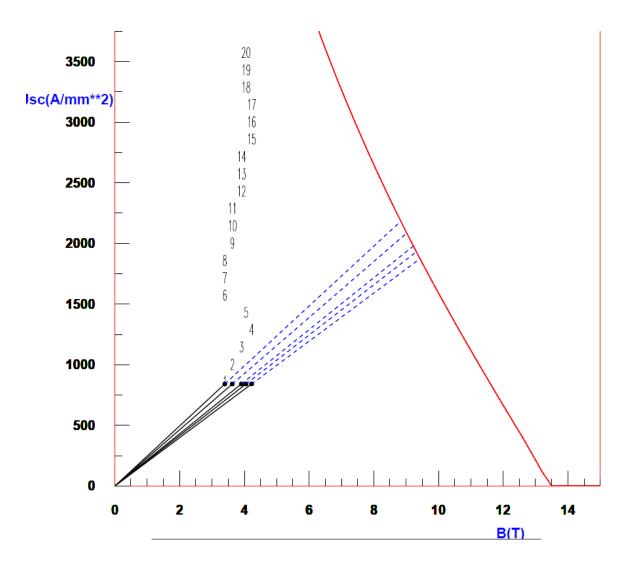



Figure 6.34: Vertical magnetic field on the center plane for the hadron beam (a). Figure (b) shows the good field region.

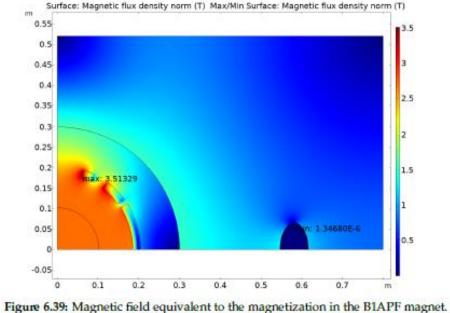

Magnet Division

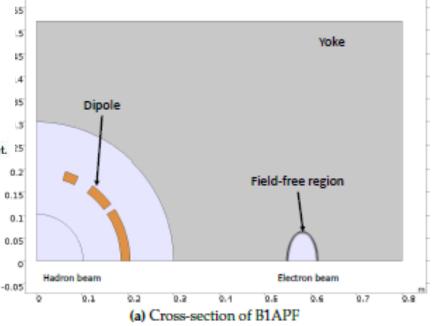
```
HARMONIC ANALYSIS NUMBER ...........
MAIN HARMONIC ......
                                           73.0000
REFERENCE RADIUS (mm) .....
X-POSITION OF THE HARMONIC COIL (mm) ......
                                            0.0000
Y-POSITION OF THE HARMONIC COIL (mm) ......
                                            0.0000
MEASUREMENT TYPE ..... ALL FIELD CONTRIBUTIONS
ERROR OF HARMONIC ANALYSIS OF Br ......
                                         0.1730E-04
SUM (Br(p) - SUM (An cos(np) + Bn sin(np))
MAIN FIELD (T) .....
                                          3.406738
MAGNET STRENGTH (T/(m^{(n-1)}))
                                            3.4067
NORMAL RELATIVE MULTIPOLES (1.D-4):
    10000.00000 b 2:
                                   -0.00144
b 1:
                 0.00000 b 3:
b 4:
    0.00000 b 5: -0.00402 b 6:
                                   -0.00000
b 7:
   -0.01432 b 8: 0.00000 b 9:
                                   -0.19807
b10:
    0.00000 b11:
                 -0.11854 b12:
                                   -0.00000
b13:
    0.02329 b14:
                     -0.00000 b15:
                                   0.00858
b16:
    0.00000 b17:
                 0.00321 b18:
                                   0.00000
b19:
    0.00089 b20:
                    -0.00000
```

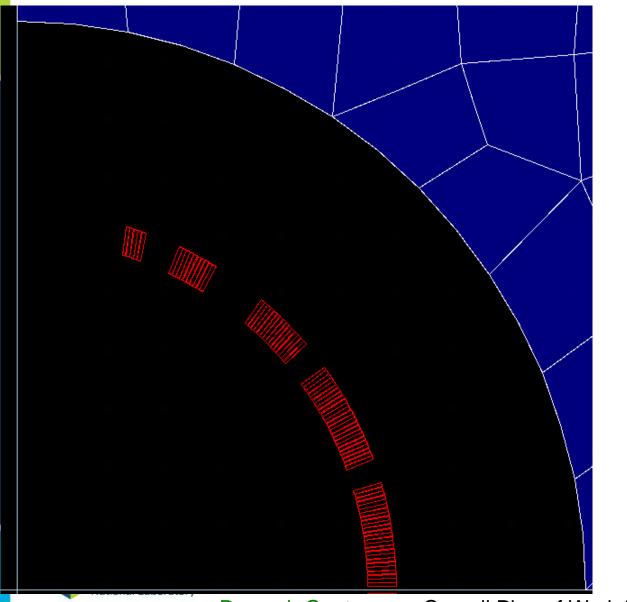
Field quality ok

Ramesh Gupta

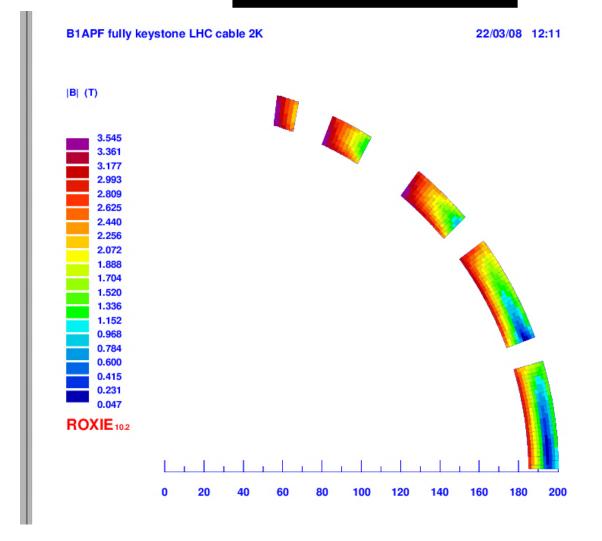
Large Margin


Ramesh Gupta


Table 6.10: Parameters of the B1APF Dipole Magnet.

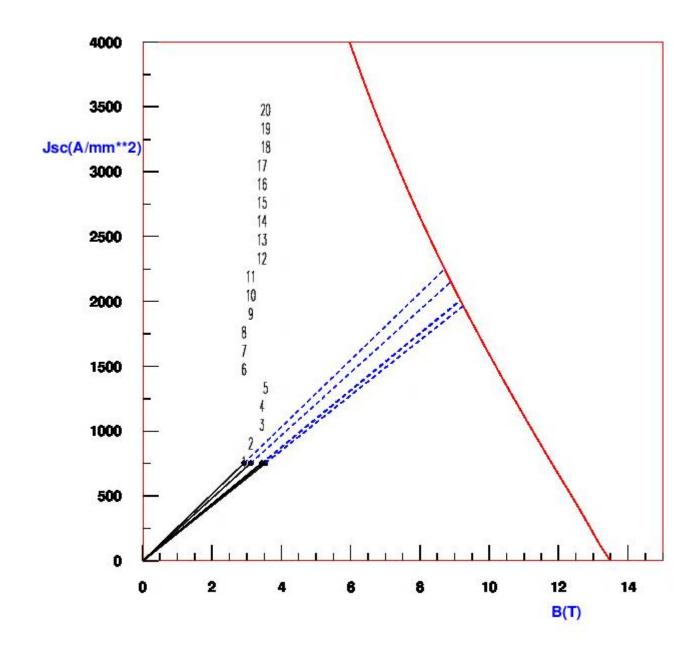

CDR Parameters and Design

Parameter	Value
Magnetic length [m]	1.5
Maximum dipole field [T]	2.7
Aperture front [m]	0.3360
Aperture rear [m]	0.3360
Design field quality	1×10^{-4}
Physical length [m]	1.6
Physical width [m]	0.41
Physical height [m]	0.41
Superconductor type	NbTi
Conductor	Cable 20x2mm ²
Current density [A/mm ²]	148
Cu:Sc ratio	1.3
Temperature [K]	4.2
Peak field wire [T]	3.5
Magnetic energy [MJ]	0.717
Ampere turns [MA·t]	1.16
Number of turns	154
Current [A]	7670
Inductance [H]	0.024376
Margin loadline [%]	60



Coil Radius: 185 mm

Coil Radius: 185 mm


```
HARMONIC ANALYSIS NUMBER ......
MAIN HARMONIC ......
REFERENCE RADIUS (mm) ......
                                               80.0000
X-POSITION OF THE HARMONIC COIL (mm) ......
                                                0.0000
Y-POSITION OF THE HARMONIC COIL (Mm) ......
                                                0.0000
MEASUREMENT TYPE ..... ALL FIELD CONTRIBUTIONS
ERROR OF HARMONIC ANALYSIS OF Br .......
                                             0.1101E-05
SUM (Br(p) - SUM (An cos(np) + Bn sin(np))
MAIN FIELD (T) .....
                                              2.700380
MAGNET STRENGTH (T/(m^(n-1)) ......
                                                2.7004
NORMAL RELATIVE MULTIPOLES (1.D-4):
b 1:
     10000.00000
               b 2:
                       -0.00000
                               b 3:
                                       0.00322
b 4:
       -0.00000
               b 5:
                       0.00422
                              b 6:
                                      -0.00000
               b 8:
b 7:
       0.01289
                       -0.00000
                              b 9:
                                       0.01186
b10:
       0.00000
               b11:
                       0.15673
                               b12:
                                      -0.00000
b13:
               b14:
                               b15:
       -0.00699
                       0.00000
                                       0.00178
b16:
               b17:
       -0.00000
                       0.00018
                               b18:
                                      -0.00000
b19:
       -0.00024
               b20:
                       0.00000
```

Field quality ok

11

Very Large Margin

Next Step

- The cable must be chosen based on the Quad design.
- Margins are (very) large.
- Reevaluate the design after the cable is chosen.
- One can drop the number of turns to reduce margins.

Extra Slides

