

Q2pF Cross-section for 2K Operation

Ramesh Gupta April 4, 2022

Status of the cross-section design of Q2pF for 2K operation

- Cross-section designed for the desired mechanical layout of turns and for some possible future adjustments in field harmonics (as per the discussion last week).
- Thickness for collar (yoke i.d.) as per the guidance from the mechanical analysis.
- Saturation-induced harmonics examined as a function of current for the entire range of EIC operation (41 GeV to 275 GeV – a factor of 6.7).
- Impact of large holes for "tie rods" near the yoke inner surface examined.
- Field in the hole for electron beam examined (magnitude and the harmonic analysis of the field inside to better examine impact of the field on beam dynamics).
- Required thickness for yoke evaluated for choosing yoke outer radius.

Basic Parameters of the current Q2BpF Design

Parameters from pCDR:

Table 6.6: Parameters Q2PF Magnet Value Parameter Magnetic length [m] 3.8 Maximum gradient [T/m] 40.7 Aperture diameter (front) [m] 0.262 Aperture diameter (rear) [m] 0.262 1×10^{-4} Required field quality Physical length [m] 3.8 Physical width [m] 0.156 Physical height [m] 0.156 Superconductor type NbTi Conductor Cable 20x2mm² Current density [A/mm²] 512 Cu:Sc ratio 1.3 Temperature [K] 1.8 Peak field wire [T] 6.85 Magnetic energy [MJ] 3.0 Ampere turns [kA·t] 420Number of turns 28 Current [A] 15000 Inductance [mH] 26.67 Margin loadline [%] 32

Parameters used in the current design:

- Gradient: 36 T/m (revised from pCDR, current 36.8 T/m)
- Physical Length: 3.8 m
- Coil inner radius: 140 mm

Design should be flexible to accommodate such changes

- Estimated effective length: 3.8 0.14 = ~3.66 m
- Estimated gradient in body: 36*3.8/3.66 = ~37.4 T/m
- Cable: 15 mm
 - (LHC inner type)
- Cu/SC: 1.6
- Temperature: 2K

EIC Q2pF 15mm cable, 2K - or=600 mm, NO tie rods 7.5kA, hole366.8mm 22/04/01 17:33

Ramesh Gupta

Optimization of Coil Geometry (pictorial)

> Angle for poles for collars, two aligned layers, wedges, gap at midplane

Optimization of Coil Geometry – ROXIE Input

								Edit Cable Data [/home/gupta/EIC/Q2pF/2022/roxie-eic.cadata]										
								File Display										
ľ	nput	to co	oil ae	ome	trv			🕞 Insulation										
									Radial	Azimut Cor	mment							
Xroxie [/home/gupta/EIC/02pE/2022/eic-02pE-600-7_7kA-NO-tig1]								1 BARE	1 BARE 0 0 BARE					Caple				
									2 ALLPOLYIL 0,15 0,12 POLYIMID MB INNER									
ile Edit Display Run								3 ALLPOLYOL	0,15	0,13 POL	naramotore							
Comment : EIC Q2pF 15mm cable, 2K - or=600 mm, NO tie rods 7.5kA, hole@366.8mm								4 ALLPOLMQY	0.08	0.08 POL	YIMID MQY,MQM							
lain Options								5 ALLPOLMQ	0,13	0,11 POL	YIMID MQ							
⊒ 3D geom ⊒ Quench	etry (LEND) simulation ((LQUENCH)	I Endspacers I Optimizat.	: (LWEDG) ion (LALGO)	ш	Time trans	ient (LPI	E Jc-Fit										
					_			🗊 Filament										
Cable data	path : /hom	ne/gupta/EIC/	Q2pF/2022/roxie	e-eic.cadata		Browse	View fil	Churrent										
								f Strand										
T 2D Uptions	\$							No Name	diam.	cu/sc R	RR Tref	Bref	Jc@BrTr	dJc/dB Comment				
Block Data	a 2D							1 STREIC1	1.065	1.6	70 1.9	10	1591	500,34 EIC BRUKER-CERN SCALED,7%DE				
No Tupe	NCab	v	V	-	Current Cab	le name d		2 STR01	1,065	1.6	70 1.9	10	1433.3	500.34 MB INNER				
	▼ 31	140	0.2	0			2 20 0	3 STR02	0,825	1.9	80 1.9	9	1953	550.03 MB OUTER, MQ				
0 0		140	74 470	05.400	7717 EIC		2 20 0	4 WIRE3	0,93683	1.6	70 4,222	5	2640	606.8 MCS,MCD,MQT?				
2 008	· 3	140	31,1/9	25,196	-7717 EIC		2 20 0	5 GSI1STRA	0,648	2,21 1	187 4,2	5,5	2495,24	583,898 GSI001 (RHIC) STRANDS				
3 Los	▼ 19	155.5	0,2	0	-//1/ EIU	LHCB2K 🔻	2 20 0	T Transient										
4 Cos	▼ 17	155.5	17	30	-7717 EIC	LHCB2K	2 20 0											
								д Quench Material F	Properties									
Mie	dolane	half-c	an = 0	2 mm ((hoth la	avers)		🕞 Cable Geometry										
	apiane		Jup – 0.			, y 010)		No Name	height.	width i	width o ns	t.ransp.	deard Co	mment.				
			_					1 EICLHCB	15.1	1,816	1,984 28	115	5 LH	C IN KEYSTOE FOR EIC DIPOLE				
Optimiz	zation a.	lgorithm	: 1 Extre	em				1 EICLHCQ	15.1	1.79	2.01 28	115	5 LH	C IN KEYSTONE FOR EICIR QUAD				
								1 EICLHC01	15.1	1,786	2.014 28	115	5 LH	C CABLE KEYSTOR FOR EIC 4.2K				
No)	(1)	Xu	X	String	Act	N/a	2 EIC3642	19,4	1,773	2,027 36	115	3 EI	C 36 STRAND @4.2K				
		-		0.050				3 EIC3618	19.4	1.773	2.027 36	115	3 EI	C 36 STRAND @1.8K				
1		3	9	8,050	a bhtk	2 -	2	Deble Definition										
2	:	25	33	28,660	2 ALPHA	2 🔻	2											
								No Name Ca	ble Geom. Stra	nd Filamer	nt Insul Tra	ans Quench Mat	•					
3		6	10	8,842	6 PHIR	2 🔻	4		LLHUB STRE			INSI NUNE	_					
4		19	28	20.261/		2 -	1		CLACA SIRE			INGI NONE	_	4 2 LHC INNER FOR ETC 14 DIFULE 02				
4		101	201	20,201					BLEOT STRO	I NBTTT		INS1 NONE	_	1.9 V6-1 DESTGN DIPOLE INNER				
								5 YELLONOLL CAT	BLE02 STRO	2 NBTIO		INS1 NONE		1.9 V6-1 DESIGN DIPOLE OUTER				
l I	Brooki National La	1aven [*]																

Q2pF Cross-section for 2K Operation

Ramesh Gupta

Magnet Division

Quench Margin in the Current X-section of the Q2pF at 2 K (desired collar size, no tie rods)

Ramesh Gupta **Magnet Division**

Q2pF Cross-section for 2K Operation

Quench Margin in the Current X-section of the Q2pF at 2 K (desired collar size, no tie rods)

Peak Field Enhancement

- Field gradient = 37.4 T/m
- Coil Radius = 140 mm
- Computed midplane field at coil radius = 140 * 37.4 = 5.236 T
- Peak field enhancement = 6.131/5.236 = 17.1%

Q2pF Cross-section for 2K Operation

Quench Margin in the Current X-section of the Q2pF at 2 K (desired collar size, no tie rods)

Q2pF Cross-section for 2K Operation

Ramesh Gupta

Magnet Division

Field Quality (Geometric Harmonics @1kA)

<u>GOAL</u>: Obtain low field harmonics in a geometry which is good mechanically (as per previous slides) at a field where persistent current induced or saturation induced harmonics are small (1kA)

Ramesh Gupta

Magnet Division

HARMONIC ANALYSIS NUMBER1MAIN HARMONIC2REFERENCE RADIUS (mm)83.0000X-POSITION OF THE HARMONIC COIL (mm)0.0000Y-POSITION OF THE HARMONIC COIL (mm)0.0000MEASUREMENT TYPE0.0000MEASUREMENT TYPE0.0000ERROR OF HARMONIC ANALYSIS OF Br0.5091E-05SUM (Br(p) - SUM (An cos(np) + Bn sin(np))

_7kA-NO-tie18x8rc265.output 🔟 🔚 Q2pF-28mar-a1cur1kA-1kA.output 🔀

MAIN	FIELD	(T)				 	 	 	 		0.42295	1
MAGNE	T STRE	NGTH	(T/	(m^ (1	n-1))	 	 	 	 		5.095	8

NORMAL RELATIVE MULTIPOLES (1.D-4):

b 1:	-0.12739	b 2:	10000.00000	b 3:	0.02750
b 4:	0.00959	b 5:	0.00095	b 6:	0.08276
b 7:	-0.00197	b 8:	-0.00058	b 9:	-0.00024
b10:	-0.20165	b11:	0.00001	b12:	0.00001
b13:	-0.00000	b14:	-0.16068	b15:	-0.00000
b16:	-0.00000	b17:	-0.00000	b18:	0.02900
b19:	0.0000	b20:	0.00000	b	

All geometric harmonics are small

Q2pF Cross-section for 2K Operation

Saturation-induced Harmonics (examine the impact of non-liner properties of iron at high fields)

Current nominal operating range of EIC (Holger Witte): 41 GeV to 275 GeV Minimum to Maximum Ratio: 1 to 6.7; Max. current: 7.7 kA (1.15 to 7.7 kA)

Persistent current induced harmonics will be of little concern (as in RHIC)

Q2pF Cross-section for 2K Operation

Evaluating the Impact of the Proposed Tie Rods

3.899

3.693

3.488

EIC Q2pF 15mm cable, 2K - or=600 mm, NO tie rods 7.5kA, hole366.8mm 22/04/02 10:43

• Tie rods will have impact at high fields.

Ramesh Gupta

Magnet Division

• Mesh to evaluate the impact of tie rods. Holes modeled for them - change iron to air.

- Field Gradient @7.7 kA goes down from 37.4 T/m to 36.2 T/m (not surprising, given the location/size).
 - This is significant (over 3.2%). *However, it is more important to examine the impact on the harmonics.*

Impact of Tie Rods @7.7 KA (1)

|Btot| (T)

EIC Q2pF 15mm cable, 2K - or=600 mm, Original tie rods 7.5kA, hole366.8n22r/04/02 10:51

With Tie Rods

EIC Q2pF 15mm cable, 2K - or=600 mm, NO tie rods 7.5kA, hole366.8mm 22/04/02 10:43

Without Tie Rods

Brookhaven⁻ National Laboratory

Magnet Division

|Btot| (T)

Tie Rods increase Saturation in pole region

Ramesh Gupta

Q2pF Cross-section for 2K Operation

Impact of Tie Rods @7.7kA (2)

EIC Q2pF 15mm cable, 2K - or=600 mm, NO tie rods 7.5kA, hole366.8mm 22/04/02 10:43

EIC Q2pF 15mm cable, 2K - or=600 mm, Original tie rods 7.5kA, hole366.8n202/04/02 10:51

Little Impact on field in the hole for electron beam

Ramesh Gupta

Q2pF Cross-section for 2K Operation

Impact of Tie Rods on Allowed Harmonics Computed as a Function of Current

Saturation-induced Allowed Harmonics in Earlier 2 K Designs (Holger Witte 2020)

Measuring Impact of Cross-talk in Hole for e-beam with B_n Harmonics (working with B_n should be a good way of communicating with accelerator physicists)

Magnet Division

Recap on the work presented so far on the Q2pF

- We have a very good solution for coil geometry mechanically good geometry with small field harmonics and some tunability. Also, enough space for collars.
- However, the impact of non-linear yoke saturation needs to be taken care of.
- There is a larger decrease in transfer function due to tie rods from 5.1 T/m/kA@1kA
 > to 4.85 T/m/kA @7.7 kA (without tie rods), and 4.69 T/m/kA (with tie rods).
- Saturation-induced b₆ goes up from 13 units without tie rods to 16 units with tie rods.
- Moreover, there is still an issue with a large field in the hole for the electron beam.

• Is there a possibility to turn-around the situation, or look for another solution?

Holes for Tie Rods – Turning them to an opportunity

 Strategy: Large holes for tie rods clearly make a significant impact on iron saturation. Let's try to make use of those large holes as a tool of opportunity!

EIC Q2pF 15mm cable, 2K - or=600 mm, Original tie rods 7.5kA, hole366.8n2t2/04/02 10:51

EIC Q2pF 15mm cable, 2K - or=600 mm, Original tie rods 7.5kA, hole366.8n2f2/04/02 11:04

Note: Field in yoke iron at the aperture – it has become higher all around (more uniform)

Ramesh Gupta

tional Laboratory

Magnet Division

Q2pF Cross-section for 2K Operation

Holes for Tie Rods – Turning them in to an opportunity

• Strategy: Large holes for tie rods clearly make a significant impact on iron saturation. Let's try to make use of those large holes as a tool of opportunity!

Ramesh Gupta

Q2pF Cross-section for 2K Operation

Tie Rods to Reduce Saturation-induced Harmonics

Optimized Iron: Major reduction in saturation induced allowed harmonics (order of magnitude)

Field Gradient @7.7 kA goes down from 36.2 T/m to 35.7 T/m for 2X holes (controlled saturation) Ramesh Gupta

Q2pF Cross-section for 2K Operation

Tie Rods to Reduce Field in Hole for Electron beam

Magnet Division

21

Tie Rods to Reduce Field in Hole for Electron beam

Field inside the e-beam Hole @50 mm radius

Tie Rods to Reduce Field in Hole for Electron beam

Optimized Iron: Major reduction in the field in the hole for e-beam

Ramesh Gupta

Q2pF Cross-section for 2K Operation

April 5, 2022

Finer optimization not yet preformed

Parametric IRON File for ROXIE (can be used for any IR Quad)

2	HyperMesh;	41	LINES
3	COMMENTS	42	<pre>ln1 = HyperLine(kp5, kp6, "Line");</pre>
4	''	43	<pre>ln2 = HyperLine(kp5, kp3, "Arc", kp2);</pre>
5		44	<pre>ln4 = HyperLine(kp6, kp4, "Arc", kp1);</pre>
6	VARIABLES	45	<pre>lna = HyperLine(kpa, kpc, "Line");</pre>
7	pi = 3.14159265;	46	<pre>lnb = HyperLine(kpd, kpc, "Arc", rh);</pre>
8	ir = 0.196;	47	<pre>lnc = HyperLine(kpa, kpd, "Arc", rh);</pre>
9	or = $0.60;$	48	<pre>lne = HyperLine(kp4, kpa, "Line");</pre>
10	xh = 0.3668;	49	<pre>lnf = HyperLine(kpc, kp3, "Line");</pre>
11	rh = 0.075;	50	<pre>lnrod1 = HyperLine(kpy1, kpy2, "Circle");</pre>
12	rc = 0.265;	51	<pre>lnrod2 = HyperLine(kpy3, kpy4, "Circle");</pre>
13	tc = 18;	52	
14	ra = 0.0514	53	<pre>lnrod3 = HyperLine(kpy5,kpy6,"Circle");</pre>
15	xc = rc*Cos(tc/180*pi);	54	<pre>lnrod4 = HyperLine(kpy7, kpy8, "Circle");</pre>
16	yc = rc*Sin(tc/180*pi);	55	
1/	xc = 0.19306;	56	
10	YC = 0.19306;	57	AREAS
19	NODES	58	ar1 = HyperArea(ln4,lne,lnc,lnb,lnf,ln2,ln1,BHiron1);
20	-NODES	59	arhole1 = HyperArea(lnb,lnc,lna,BH air);
21	kp1 = [0, 11], kp2 = [0, or].	60	arRod1 = HyperArea(lnrod1,BH air);
22	$kp_2 = [0.,01],$ $kp_3 = [or 0].$	61	arRod2 = HyperArea(lnrod2,BH air);
24	kp3 = [01, 0]; kp4 = [ir, 0];	62	
25	$kp_{1} = [-or, 0];$	63	arRod3 = HyperArea(lnrod3,BH air);
2.6	kp6 = [-ir, 0];	64	arRod4 = HyperArea(lnrod4,BH air);
27	kpa = [xh-rh, 0];	65	_
28	kpb = [xh, 0];	66	HOLES
29	kpc = [xh+rh, 0];	67	<pre>HyperHoleOf(arRod1,ar1);</pre>
30	kpd = [xh, rh];	68	HyperHoleOf(arRod2,ar1);
31	kpy1 = [xc, yc-ra];	69	
32	kpy2 = [xc, yc+ra];	70	HyperHoleOf(arRod3,ar1);
33	kpy3 = [-xc, yc-ra];	71	<pre>HyperHoleOf(arRod4,ar1);</pre>
34	kpy4 = [-xc, yc+ra];	72	
35		73	Need to give parameters
36	<pre>kpy5 = [yc,xc-ra];</pre>	74	MESH
37	<pre>kpy6 = [yc,xc+ra];</pre>	75	Lmesh(ln1,25); of only one tie rod hole.
38	kpy7 = [-yc, xc-ra];	76	Lmesh(ln4,50);
39	kpy8 = [-yc, xc+ra];	77	Lmesh(lne,10); Others are created for
10		78	<pre>Lmesh(lnrod1,20);</pre>
	Brooknaven	79	Lmesh(lnrod2,20); QUAD SYMMETRY.
	National Laboratory	_	
M	agnet Division	Kar	mesh Gupta Q2pF Cross-section for
			•

Q2pF Cross-section for 2K Operation

Choosing Yoke Outer Radius Field on X-axis @I=8kA (gradient = 36.8 T/m)

Outer radius = 550 mm

Outer radius = 600 mm

Outer radius = 650 mm

Magnet Division Ramesh Gupta

Q2pF Cross-section for 2K Operation

Holes for e-beam at two ends of the Q2pF

@366.28 mm from Q2pF center

@423 mm from Q2pF center

New locations are a bit further out (less challenging). We are covering a large range. Brookhaven Magnet Division

Ramesh Gupta

Q2pF Cross-section for 2K Operation

Holes for e-beam at two ends of the Q2pF

@366.28 mm from Q2pF center

@423 mm from Q2pF center

Holes for e-beam at two ends of the Q2pF field @r=50mm

@366.28 mm from Q2pF center

EIC Q2pF 15mm cable, 2K - or=600 mm, Optimized tie rods 8kA, hole366.8n202n04/04 08:31

Ramesh Gupta

Magnet Division

@423 mm from Q2pF center

EIC Q2pF 15mm cable, 2K - or=600 mm, Optimized tie rods 8kA, hole423mm22/04/04 09:18

April 5, 2022

Q2pF Cross-section for 2K Operation

29

Tie Rods to Reduce Field in Hole for Electron beam

Optimized Iron: Major reduction in the field in the hole for e-beam

Ramesh Gupta

Q2pF Cross-section for 2K Operation

April 5, 2022

Finer optimization not yet preformed

Summary

- A reasonably good coil cross-section optimized. It has small geometric harmonics, good mechanically geometry, and has some tunability for adjusting harmonics.
- The cross-section has the collar thickness as requested by the initial mechanical analysis. A further increase can be accommodated, if needed.
- Operating margin is ~70%. Can be reduced, if desired, with a single layer design (higher current) or with a narrower cable which can also be used in B1pF & B1apF.
- Relatively large holes for tie rods near the yoke inner radius included. They have a large impact on saturation-induced harmonics. Location and number of those holes are used in reducing the impact of non-linear iron saturation on field quality.
- These holes are also used in reducing field in the hole for the electron beam.
- The field in the hole has become so low ($\sim \frac{1}{2}$ mT) that either the solution can be used as such (low B_n's) or can be further reduced with a mu-metal shield.
- B_n (not b_n) harmonic method is suggested to communicate with accelerator physicists so that they can examine the impact of these non-linearity on e-beam. Ramesh Gupta Q2pF Cross-section for 2K Operation April 5, 2022

Magnet Division

Extra Slides

Q2pF Cross-section for 2K Operation

LHC Style Cable used in Quad & Dipole (based on full keystone for Q2pF and B1ApF)

	🖪 Cable Geometi	гч									
	No Name	height	width_i	width_o	ns	transp.	degrd Comment	8			
	1 EICLHCB	15.1	1.816	1,984	28	115	5 LHC IN KEYSTOE FOR EIC DIPOLE				
	1 EICLHCQ	15.1	1,79	2,01	28	115	5 LHC IN KEYSTONE FOR EICIR QUAD	Keyston	e angle for cable	width << c	oil readius
	1 EICLHC01	15.1	1,786	2,014	28	115	5 LHC CABLE KEYSTOR FOR EIC 4,2K	inc ystor	e ungle for cubic		
	2 EIC3642	19,4	1,773	2,027	36	115	3 EIC 36 STRAND @4,2K			QZPF	втарь
	3 EIC3618	19.4	1,773	2,027	36	115	3 EIC 36 STRAND @1.8K	Cable he	Cable height Cable mid-thickness		15.1
	4 EIC3642A	19.4	1,788	2,012	36	115	3 EIC 36 STRAND 04.2K 2 Layers	Cable m			1.9
	5 CABLE01	15.1	1,736	2,064	28	115	5 MB INNER LAYER,STR01	Insul (on	e side)	0.12	0 1 2
2.10	6 CABLE02	15.1	1,362	1,598	36	100	5 MB OUTER LAYER,STR01			0.12	0.12
	7 SINGLE	0,94	0,94	0,94	1	0	O SINGLE STRAND	Coll I.r.		140	185
	8 GSI1CAB	9,74	1,061	1,271	30	74	0 GSI001 (RHIC) CABLE				
	9 GSI001	9,73	1,111	1,321	30	74	0 GSI001 following Wanderer				
	10 20MMCABL	E 20	1.736	2,172	37	0	0 20mm cable	Avg Rod		147 55	102 55
	11 20MMCBNO	К 20	13.8	13.8	280	0	0 7x20mm cable, no keystone	Avg Kau		147.55	192.55
	12 20MMCAB2	20	1.8	2	37	0	0 20 mm cable 2	dt		0.2190	0.1678
								Width i		1.790	1.816
	[+] Capie Definit	10n						width o		2.010	1,984
	No Name	Cable Geom.	Strand Fil	ament Insul	Trans	Quench Mat.	T_o Comment	widen_o			1.501
	1 EICLHCB2	K EICLHCB	STREIC1 NBT	II ALLPOLY	IL TRANS1	NONE	2 LHC INNER FOR EIC IR QUA	AD @2k	Noto Ko	(stone)	s aro
	2 EICLHCQ2	K EICLHCQ	STREIC1 NBT	II ALLPOLY	IL TRANS1	NONE	2 LHC INNER FOR EIC IR DIF	POLE @	note. Rey		Saic
	3 LHCIN42K	EICLHC01 S	STREIC1 NBT	II ALLPOLY	IL TRANS1	NONE	4,2 LHC INNER FOR EIC 04,2K		reduce	d for E	IC
LHC 💳	YELLONIN	CABLE01 S	STRO1 NBT	II ALLPOLY	IL TRANS1	NONE	1,9 V6-1 DESIGN DIPOLE INNER	2			
	YELLONOU	CABLE02	STRO2 NBT	IO ALLPOLY	OL TRANS1	NONE	1.9 V6-1 DESIGN DIPOLE OUTER	2			

Cables considered for EIC: "EICLHCB2K" and "EICLHCQ2K" (EICLHCB and EICLHCQ) Similar to LHC inner: "YELLONIN" (CABLE01)

Ramesh Gupta

Q2pF Cross-section for 2K Operation

Impact on Non-allowed Harmonics in Q2pF

Small non-allowed harmonics (computational errors)

Ramesh Gupta

rookhaven

Magnet Division

Q2pF Cross-section for 2K Operation