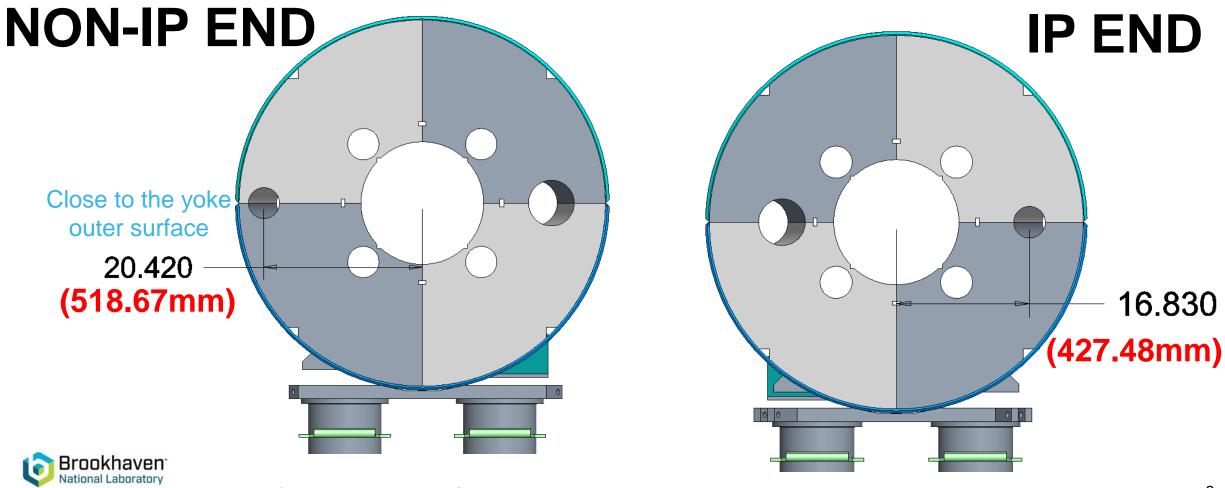




## Q2pF Yoke Cross-section Impact of Heat Exchanger Hole Ramesh Gupta May 10, 2022



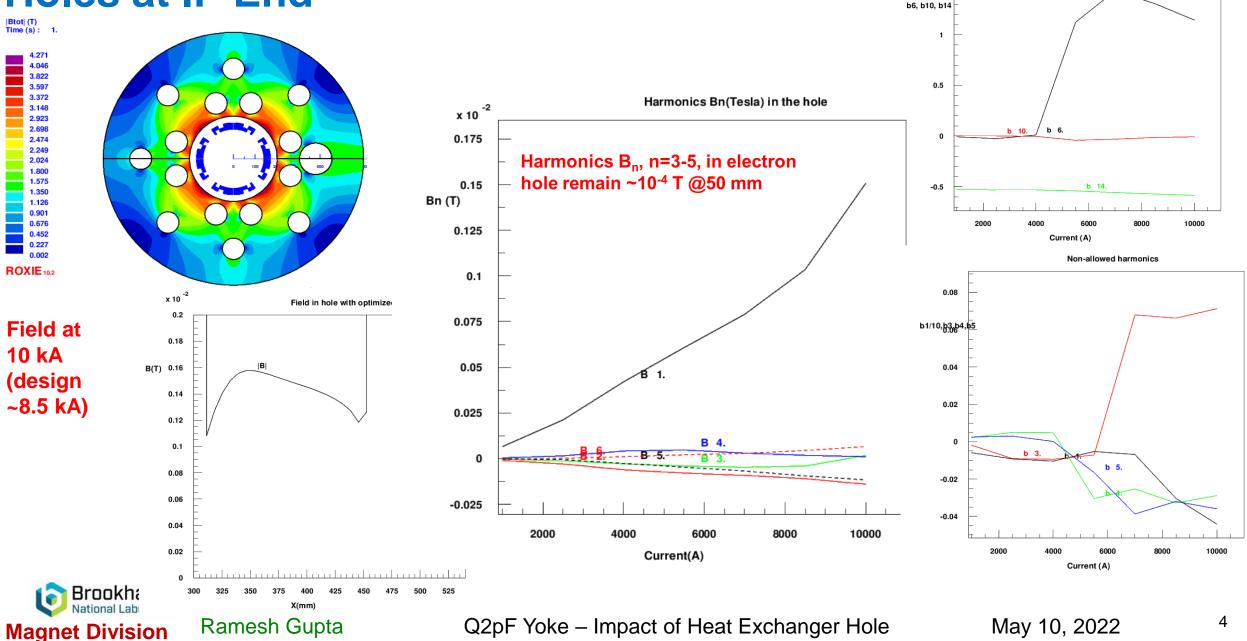

### Status of the cross-section design of Q2pF for 2K operation

- Impact of additional holes for 2K cryo-system examined for holes for the size and location suggested by the engineering group.
- Saturation-induced harmonics must remain low in the EIC design range of operation (41 GeV to 275 GeV – a factor of 6.7).
- Field and field harmonics must remain low in the electron hole.



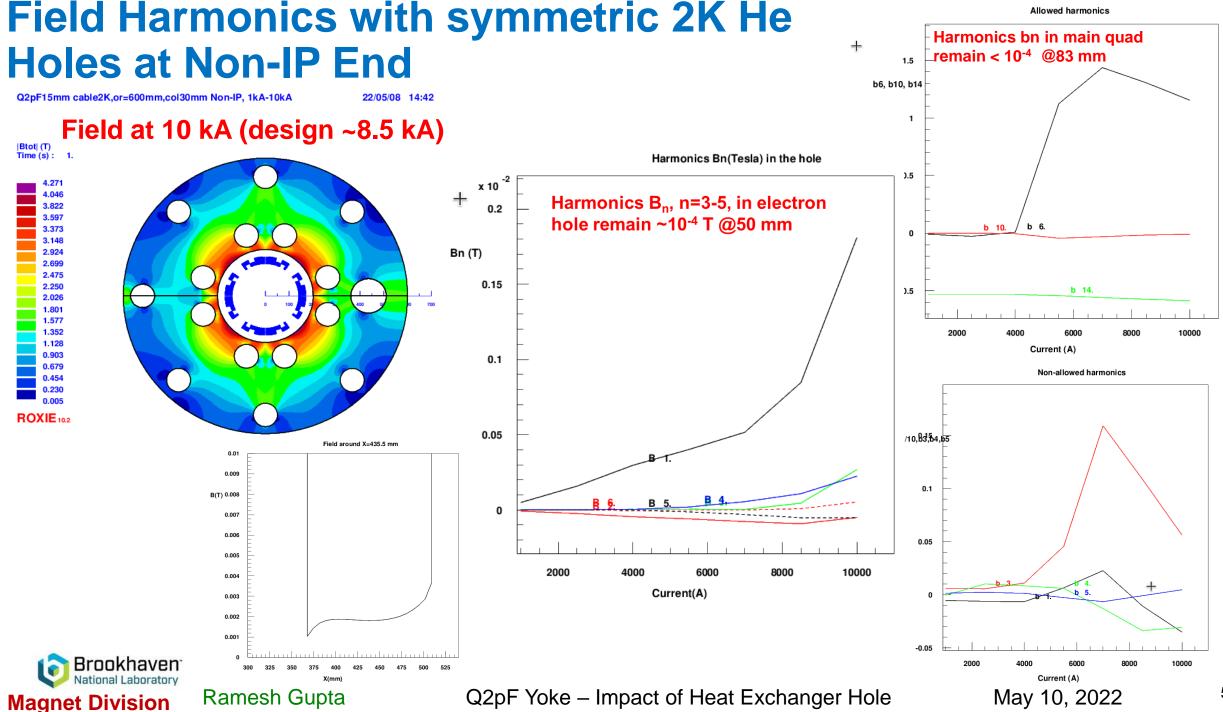
# **Proposed Location of 4" diameter Hole for the EIC Forward Side 2K Heat Exchanger in Q2pF**



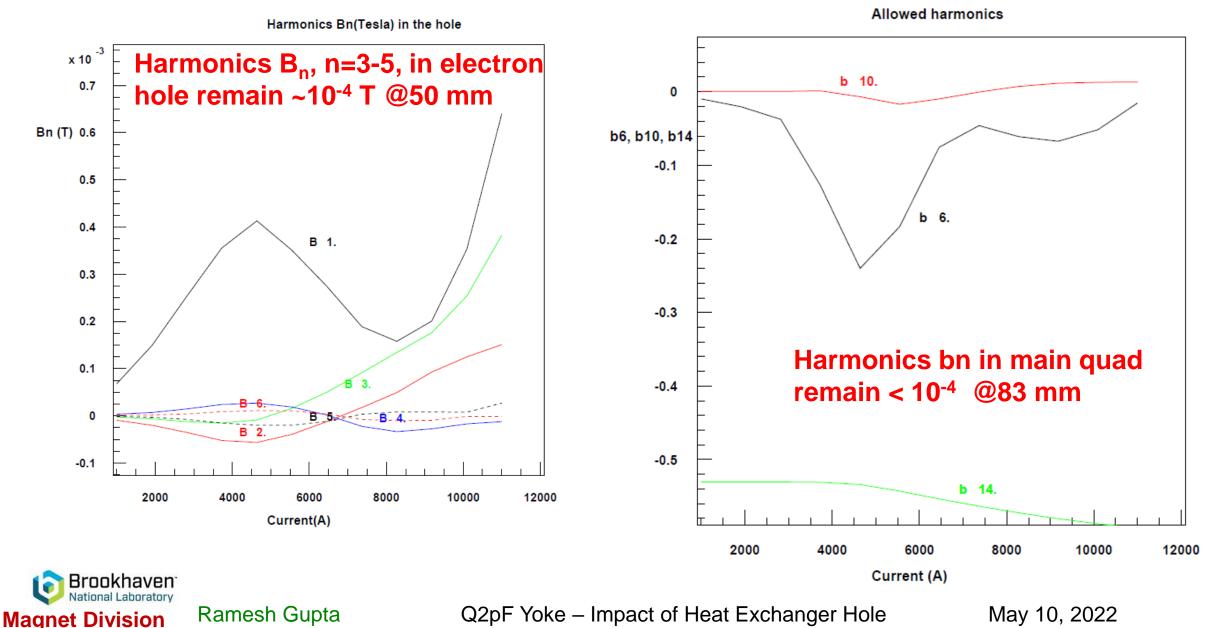

Ramesh Gupta Q2

**Magnet Division** 

Q2pF Yoke – Impact of Heat Exchanger Hole

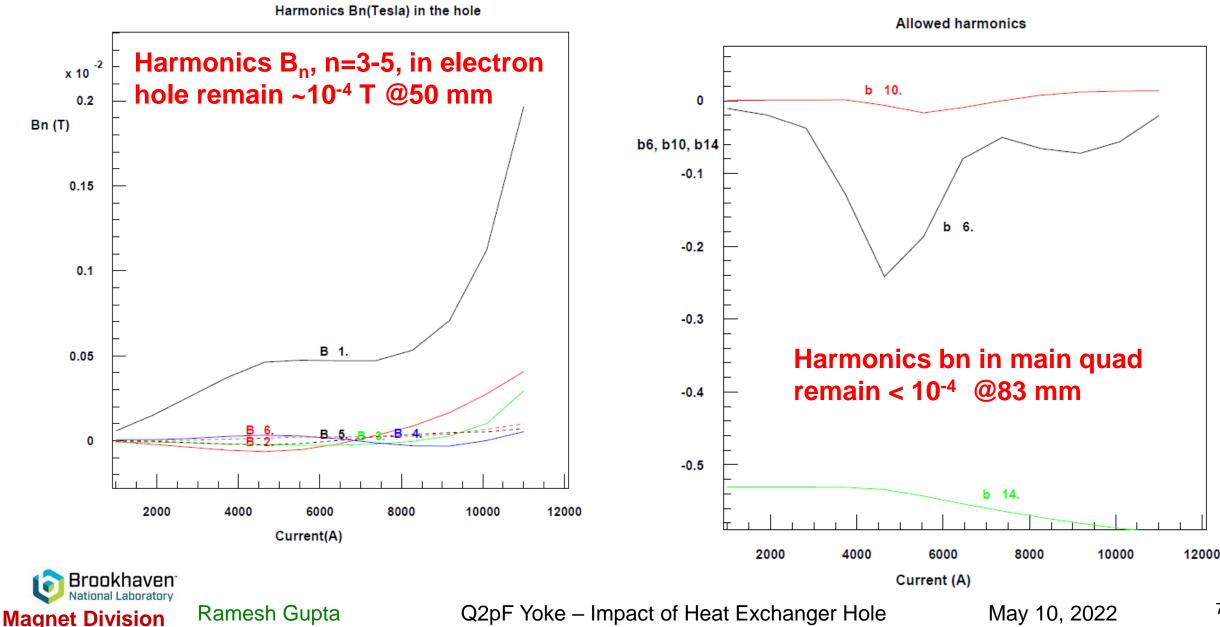

May 10, 2022

#### Field Harmonics with symmetric 2K He Holes at IP End



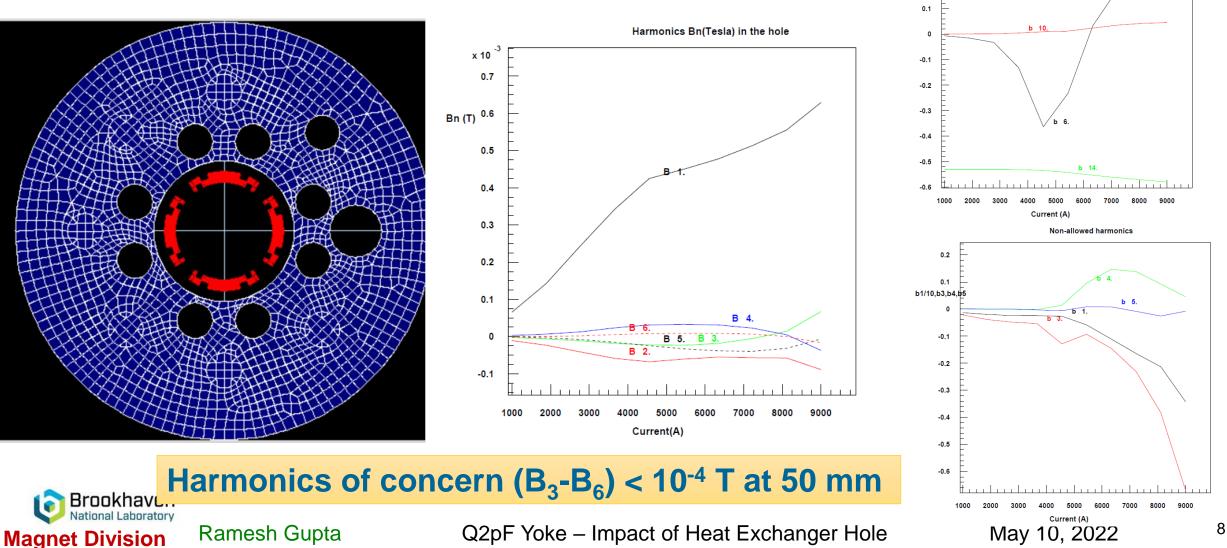

Allowed harmonics Harmonics bn in main quad remain < 10<sup>-4</sup> @83 mm

1.5




#### Field Harmonics without 2K Hole at IP-End (yoke or=600mm)



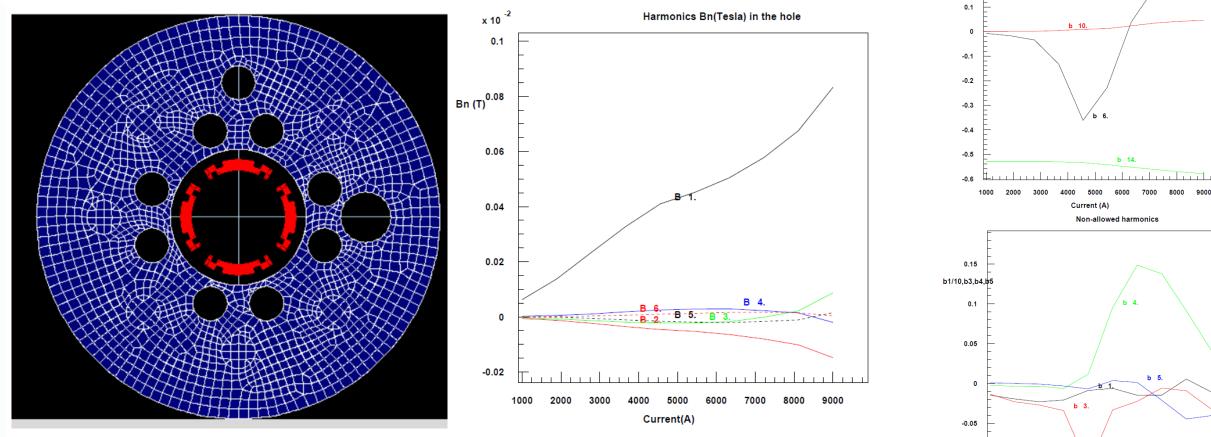

<sup>6</sup> 

### 4" diameter 2K Hole at IP-End (yoke or=600mm)



### Impact of 4" diameter Hole in Iron @45°

 $\succ$  Harmonics (B<sub>n</sub>) in electron hole remain < 10<sup>-4</sup> T @50 mm ➢ Harmonics (bn) in main quad remain < 10<sup>-4</sup> @83 mm




llowed harmonics

b6, b10, b14

### Impact of 4" diameter Hole in Iron @90°

Harmonics (B<sub>n</sub>) in electron hole remain < 10<sup>-4</sup> T @50 mm
Harmonics (bn) in main quad remain < 10<sup>-4</sup> @83 mm



#### Harmonics of concern ( $B_3$ - $B_6$ ) < 10<sup>-4</sup> T at 50 mm



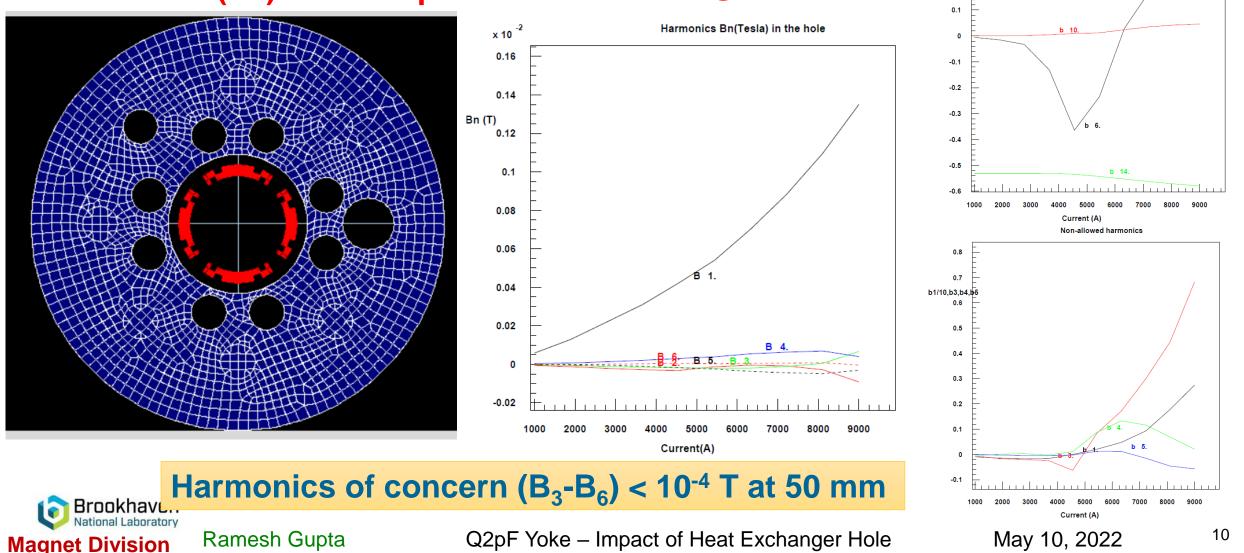
Ramesh Gupta

Q2pF Yoke – Impact of Heat Exchanger Hole

9

Current (A)

llowed harmonics


0.3

-0.1

b6, b10<sup>0</sup>814

## Impact of 4" diameter Hole in Iron @135°

Harmonics (B<sub>n</sub>) in electron hole remain < 10<sup>-4</sup> T @50 mm
Harmonics (bn) in main quad remain < 10<sup>-4</sup> @83 mm



## **Future Work**

- Short term (within a week): Cross-check with other codes (COMSOL/OPERA) for low fields and low field harmonics in electron hole
- Medium term (with a few months, doesn't hold most other work): Internal details of yoke iron (holes for 2K helium, further optimization of field quality)
- Longer term (may not be needed): Coil cross-section iteration for dividing one big wedge in each layer to two for making them smaller and further reducing b<sub>14</sub>

| NORMAL RELATIVE MULTIPOLES (1.D-4): |          |      |             |      |          |  |  |  |  |  |
|-------------------------------------|----------|------|-------------|------|----------|--|--|--|--|--|
| b 1:                                | -0.13185 | b 2: | 10000.00000 | b 3: | -0.00388 |  |  |  |  |  |
| b 4:                                | 0.01480  | b 5: | -0.00085    | b 6: | -0.00623 |  |  |  |  |  |
| b 7:                                | -0.00045 | b 8: | 0.00019     | b 9: | 0.00008  |  |  |  |  |  |
| b10:                                | 0.00051  | b11: | 0.00000     | b12: | 0.00000  |  |  |  |  |  |
| b13:                                | 0.00000  | b14: | -0.53040    | b15: | -0.00000 |  |  |  |  |  |
| b16:                                | -0.00000 | b17: | -0.00000    | b18: | 0.01442  |  |  |  |  |  |
| b19:                                | 0.00000  | b20: | 0.00000     | b    |          |  |  |  |  |  |



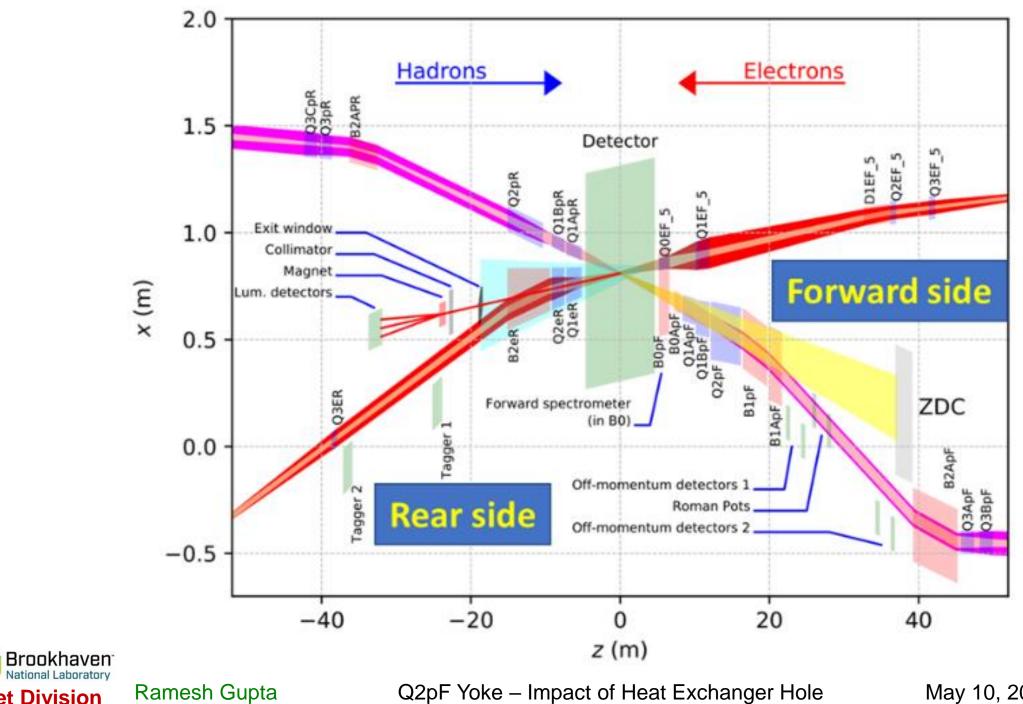
Ramesh Gupta

Q2pF Yoke – Impact of Heat Exchanger Hole

May 10, 2022

## Summary and Conclusion

- Coil and overall cross-section of Q2pF has been sufficiently optimized and matured enough that the next phase of work can start
- Coil design seems to have good layout (wedges and poles)
- Allowable space for collar thickness increased to 30 mm
- Field quality in the main quad remains good (b<sub>n</sub> <10<sup>-4</sup> at r= 83 mm) for the entire operating range (low geometric and low saturation induced harmonics)
- Field errors (measured by B<sub>n</sub>) in the electron holes remain low (B<sub>n</sub> <10<sup>-4</sup> at r=50 mm) for the entire operating range
- The flexibility in cross-section increased to allow wider adjustments from errors on parts and construction




## **Extra Slides**



Q2pF Yoke – Impact of Heat Exchanger Hole

May 10, 2022



0

**Magnet Division** 

Ramesh Gupta

May 10, 2022

### **Basic Parameters of the current Q2BpF Design**

#### **Parameters from pCDR:**

Table 6.6: Parameters Q2PF Magnet

Value

3.8

40.7

0.262

0.262

 $1 \times 10^{-4}$ 

3.8

0.156 0.156

NbTi

Cable 20x2mm<sup>2</sup>

512

1.3

1.8

6.85

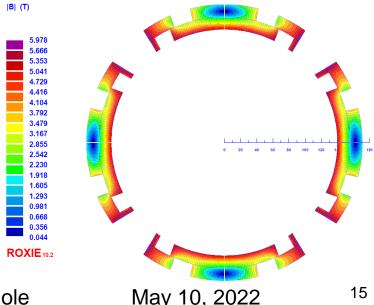
3.0

420

28

15000

26.67


32

#### Parameters used in the current design:

- Gradient: 36 T/m (revised from pCDR, current 36.8 T/m)
- Physical Length: 3.8 m
- Coil inner radius: 140 mm •

Design should be flexible to accommodate such changes

- Estimated effective length: 3.8 0.14 = -3.66 m
- Estimated gradient in body: 36\*3.8/3.66 = -37.4 T/m •
- Cable: 15 mm
  - (LHC inner type)
- Cu/SC: 1.6
- Temperature: 2K





Parameter

Magnetic length [m]

Required field quality Physical length [m]

Physical width [m]

Physical height [m]

Conductor

Cu:Sc ratio

Temperature [K]

Peak field wire [T]

Magnetic energy [MJ]

Ampere turns [kA·t]

Number of turns

Inductance [mH]

Margin loadline [%]

Current [A]

Superconductor type

Current density [A/mm<sup>2</sup>]

Maximum gradient [T/m]

Aperture diameter (front) [m]

Aperture diameter (rear) [m]

Ramesh Gupta

## LHC Style Cable used in Quad & Dipole (based on full keystone for Q2pF and B1ApF)

|            | i                  |               |             |             |             |          |               |                                  |          |                    |              |             |
|------------|--------------------|---------------|-------------|-------------|-------------|----------|---------------|----------------------------------|----------|--------------------|--------------|-------------|
|            | (†                 | Cable Geometr | ъ           |             |             |          |               |                                  |          |                    |              |             |
|            |                    | No Name       | height      | width_i     | width_o     | ns       | transp.       | degrd Comment                    |          |                    |              |             |
|            |                    | 1 EICLHCB     | 15.1        | l 1.816     | 1,984       | 28       | 115           | 5 LHC IN KEYSTOE FOR EIC DIPOLE  |          |                    |              |             |
| <b>EIC</b> |                    | 1 EICLHCQ     | 15.1        | L 1.79      | 2,01        | 28       | 115           | 5 LHC IN KEYSTONE FOR EICIR QUAI | Keyst    | one angle for cabl | e width << c | oil readius |
|            |                    | 1 EICLHC01    | 15.1        | l 1.786     | 2,014       | 28       | 115           | 5 LHC CABLE KEYSTOR FOR EIC 4,2k | inc yst  |                    |              |             |
| ŕ          |                    | 2 EIC3642     | 19.4        | 1,773       | 2,027       | 36       | 115           | 3 EIC 36 STRAND @4.2K            |          |                    | Q2pF         | B1ApF       |
|            |                    | 3 EIC3618     | 19.4        | 1,773       | 2,027       | 36       | 115           | 3 EIC 36 STRAND @1.8K            | Cable    | height             | 15.1         | 15.1        |
|            |                    | 4 EIC3642A    | 19.4        | 1,788       | 2,012       | 36       | 115           | 3 EIC 36 STRAND @4.2K 2 Layers   | Cable    | mid-thickness      | 1.9          | 1.9         |
| LHC        |                    | 5 CABLE01     | 15.:        | l 1,736     | 2,064       | 28       | 115           | 5 MB INNER LAYER,STR01           |          | one side)          | 0.12         | 0.12        |
|            |                    | 6 CABLE02     | 15.:        | l 1,362     | 1,598       | 36       | 100           | 5 MB OUTER LAYER,STR01           |          |                    |              |             |
|            |                    | 7 SINGLE      | 0,94        | 1 0,94      | 0,94        | 1        | 0             | 0 SINGLE STRAND                  | Coil i.r | •                  | 140          | 185         |
|            |                    | 8 GSI1CAB     | 9.74        | 1,061       | 1,271       | 30       | 74            | 0 GSI001 (RHIC) CABLE            | 1        |                    |              |             |
|            |                    | 9 GSI001      | 9.73        | 3 1.111     | 1,321       | 30       | 74            | 0 GSI001 following Wanderer      |          |                    |              |             |
|            |                    | 10 20MMCABLE  | E 20        | 1,736       | 2,172       | 37       | 0             | 0 20mm cable                     |          |                    | 4 47 55      | 402.55      |
|            |                    | 11 20MMCBNO   | K 20        | 13,8        | 13.8        | 280      | 0             | 0 7x20mm cable, no keystone      | Avg Ra   | 30                 | 147.55       | 192.55      |
|            |                    | 12 20MMCAB2   | 20          | 1,8         | 2           | 37       | 0             | 0 20 mm cable 2                  | dt       |                    | 0.2190       | 0.1678      |
|            |                    |               |             |             |             |          |               |                                  | Width    | i                  | 1.790        | 1.816       |
|            | ☐ Cable Definition |               |             |             |             |          |               | width                            | _        | 2.010              | 1.984        |             |
|            |                    | No Name       | Cable Geom. | Strand Fil  | ament Insul | Trans    | s Quench Mat. | T_o Comment                      |          |                    | 21010        | 1.501       |
|            |                    | 1 EICLHCB2    | K EICLHCB   | STREIC1 NBT | II ALLPOLY  | IL TRANS | 51 NONE       | 2 LHC INNER FOR EIC IR QU        | AD @2k   | Note: Ke           | vstone       | s aro       |
| <b>EIC</b> |                    | 2 EICLHCQ2    | K EICLHCQ   | STREIC1 NBT | II ALLPOLY  | IL TRANS | 51 NONE       | 2 LHC INNER FOR EIC IR DI        | POLE @   |                    |              |             |
|            |                    | 3 LHCIN42K    | EICLHC01    | STREIC1 NBT | II ALLPOLY  | IL TRANS | 51 NONE       | 4.2 LHC INNER FOR EIC @4.2K      |          | reduce             | ed for E     |             |
| LHC 💳      | odat               | YELLONIN      | CABLE01     | STR01 NBT   | II ALLPOLY  | IL TRANS | 51 NONE       | 1.9 V6-1 DESIGN DIPOLE INNE      | २        |                    | _            | -           |
|            | aat                | 5 YELLONOU    | CABLE02     | STR02 NBT   | IO ALLPOLY  | OL TRANS | 51 NONE       | 1.9 V6-1 DESIGN DIPOLE OUTER     | २        |                    |              |             |
|            |                    |               | OTHER F.    | LUTDER UDT  |             | LIGUE    | Lucium.       |                                  | -        |                    |              |             |

#### Cables considered for EIC: "EICLHCB2K" and "EICLHCQ2K" (EICLHCB and EICLHCQ) Similar to LHC inner: "YELLONIN" (CABLE01)



Ramesh Gupta

Q2pF Yoke – Impact of Heat Exchanger Hole

May 10, 2022