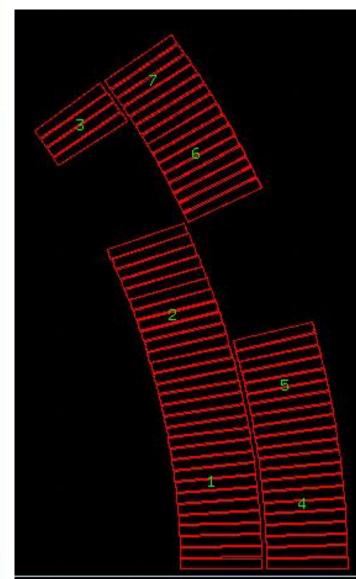


Starting of 3-d Optimization of the Magnetic Design of Q2pF

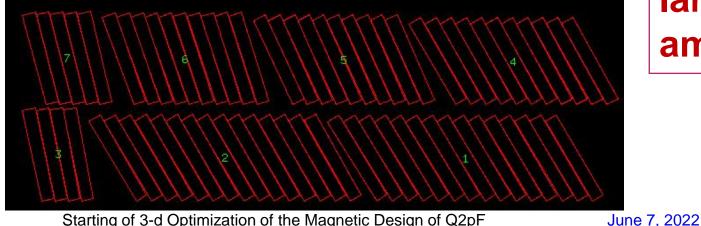
Ramesh Gupta June 7, 2022



Overview

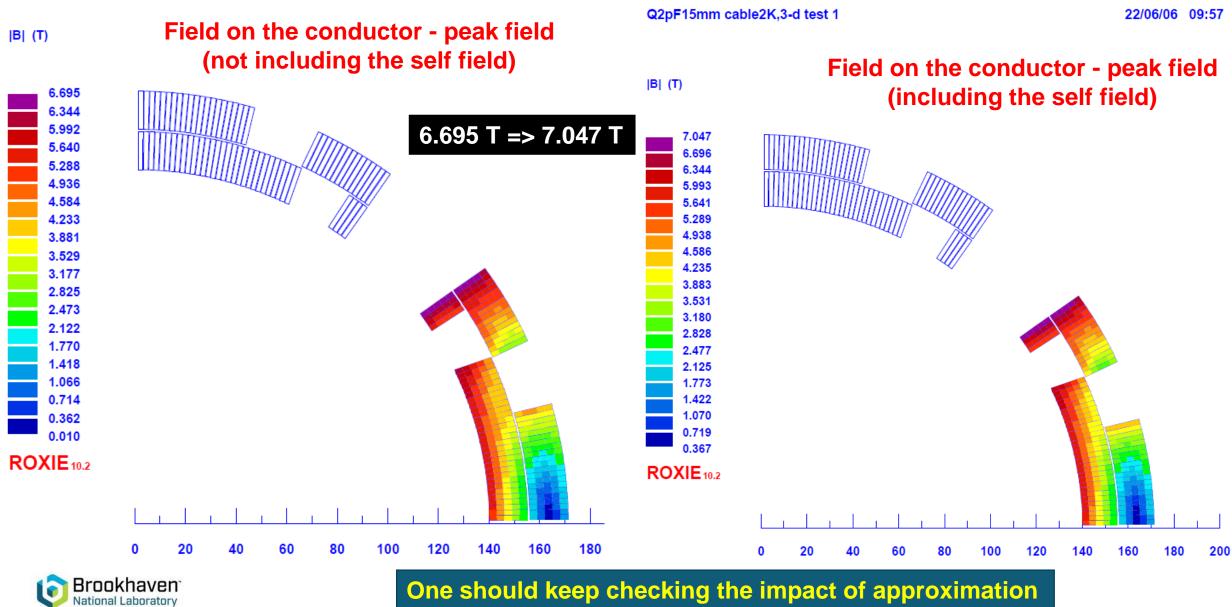
- This exercise focuses on reducing peak field in the Ends
 - Ideally peak field in the Ends should be a bit lower than in 2-d but should not be much higher than in 2-d
 - > A higher peak field reduces the margin
- Ends should also have small integrated harmonics so that the straight section (body) and Ends of the magnet can be optimized independently
- End turns should also be easy to wind with minimum strain on the conductor. This and other mechanical consideration should also be taken care of.
 - It is easier if the rules for a good magnetic design and for a good mechanical design are optimized in separate runs and then the two are combined.
- This presentation summarizes the initial approach (work just started) for magnetic design of the ends. It is assumed that the mechanical layout of the turns is already optimized or will not change substantially (if do need to iterate)

Peak Field Reduction in the Ends of the Magnet


Ramesh Gupta


Significant enhancement in the peak field \sim 6.8 T (2d) to \sim 8 T (3d)

MARGIN CALC (USING LINEAR JC-APPROX):	
BLOCK NUMBER	3
PEAK FIELD IN CONDUCTOR 34 (T)	7.9586
CURRENT IN CONDUCTOR 34 (A)	-8500.0000
SUPERCONDUCTOR CURRENT DENSITY (A/MM2)	-886.0233
PERCENTAGE ON THE LOAD LINE	73.8207
QUENCHFIELD (T)	10.7810
PERCENTAGE OF SHORT SAMPLE CURRENT	66.0838


MARGIN CALC (USING LINEAR JC-APPROX):	
BLOCK NUMBER	7
PEAK FIELD IN CONDUCTOR 70 (T)	7.7507
CURRENT IN CONDUCTOR 70 (A)	-8500.0000
SUPERCONDUCTOR CURRENT DENSITY (A/MM2)	-886.0233
PERCENTAGE ON THE LOAD LINE	72.2431
QUENCHFIELD (T)	10.7286
PERCENTAGE OF SHORT SAMPLE CURRENT	67.3827

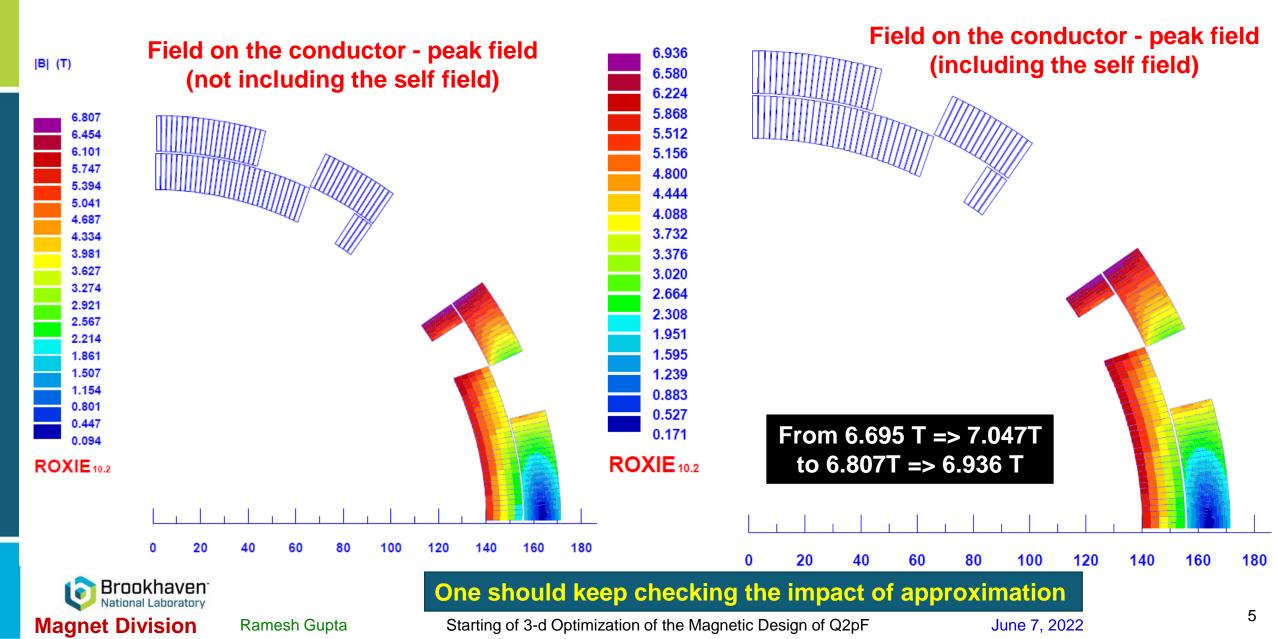
Starting of 3-d Optimization of the Magnetic Design of Q2pF

Peak Field in the Body of the Magnet (turns divided 1X5)

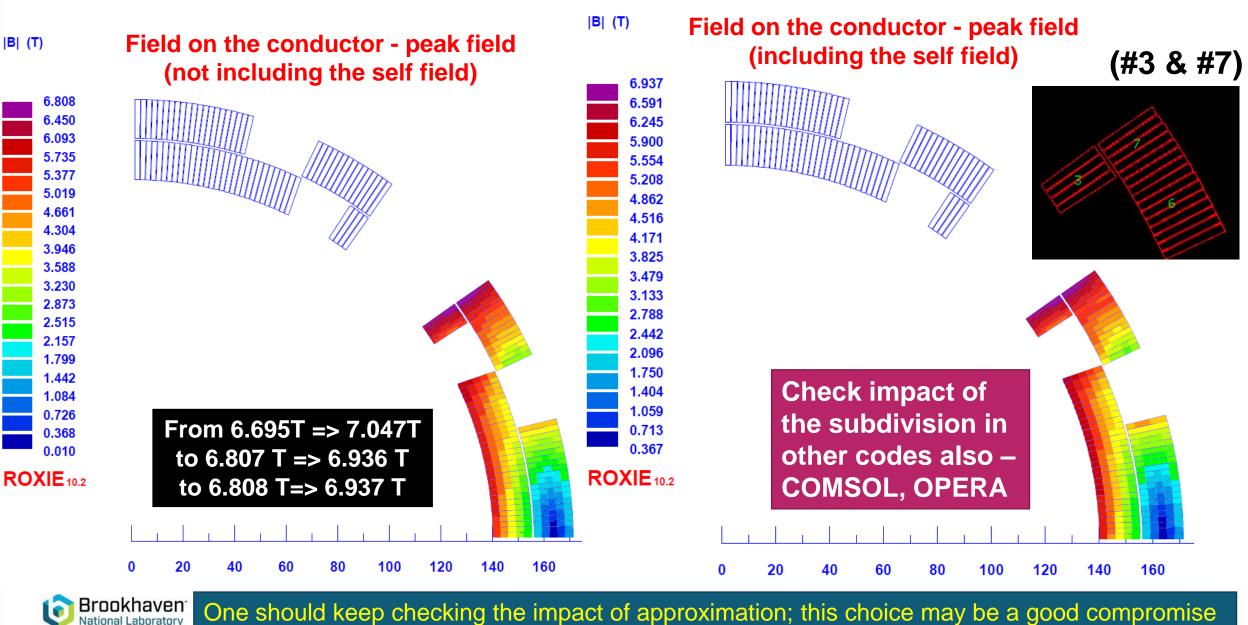
Ramesh Gupta

Magnet Division

Starting of 3-d Optimization of the Magnetic Design of Q2pF


June 7, 2022

4


Peak Field in the Body of the Magnet (turns divided 2X20)

Q2pF15mm cable2K,3-d test 1

22/06/06 |B| (T)

Peak Field in the Body of the Magnet (pole 2X20, others 1X5)

Magnet Division Ramesh Gupta

Starting of 3-d Optimization of the Magnetic Design of Q2pF

June 7, 2022

Peak Field Computations with different number of divisions

Same ends in both cases

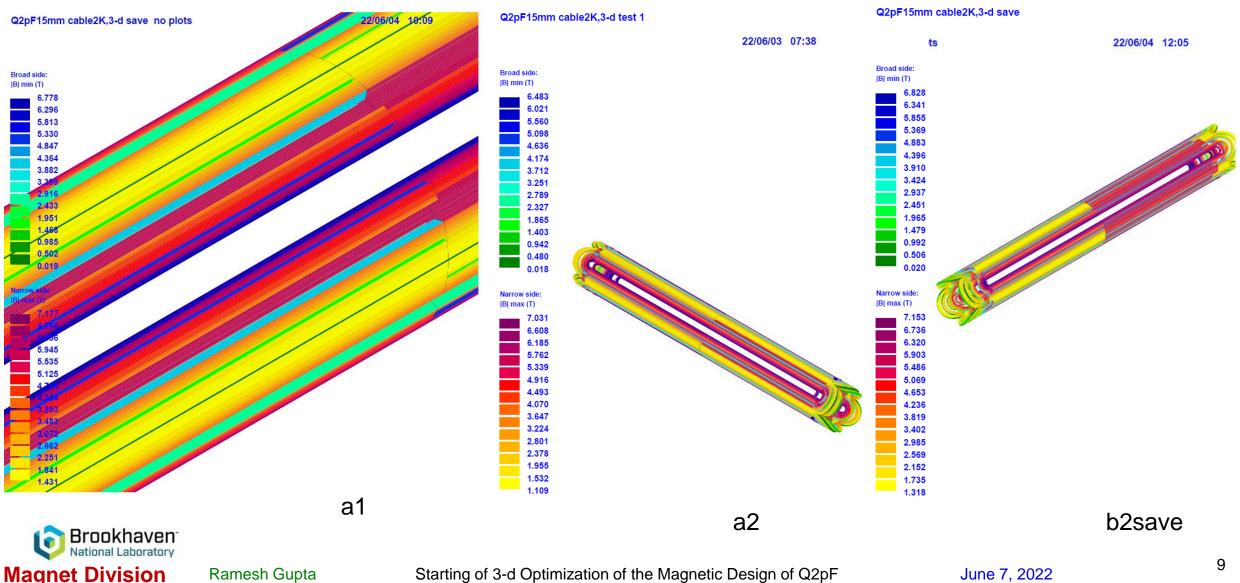
cases	All 1X5						96 T 75 T		ole 2X20 hers 1X5	Block #3 Block #7		
	3D REFEREN REFERENCE MAGNETIC 1	MAGN	ET STF	RENGT	н (т/(m^(n−1)))			2.6314 31.7037 1505.2139	<u>Takeawa</u>	y:
	MARGIN CALC (BLOCK NUMBER PEAK FIELD IN CURRENT IN CO SUPERCONDUCTO PERCENTAGE ON QUENCHFIELD (PERCENTAGE OF	N CONDUCTO ONDUCTO OR CURP N THE L (T)	JCTOR DR 34 (RENT DEN LOAD LIN	34 (T) (A) NSITY (NE)) (A/MM2)		·····	3 7.9586 -8500.0000 -886.0233 73.8207 10.7810 66.0838		3 8.0586 8500.0000 886.0233	relative	Э
	MARGIN CALC BLOCK NUMBER PEAK FIELD I CURRENT IN C SUPERCONDUCT PERCENTAGE O QUENCHFIELD PERCENTAGE O	N COND ONDUCT OR CUR N THE (T)	UCTOR OR 70 RENT DE LOAD LI	70 (T (A) NSITY NE) (A/MM2)	· · · · · · · · · · · · · · · · · · ·	·····	7 7.7507 -8500.0000 -886.0233 72.2431 10.7286 67.3827		7 7.8721 -8500.0000 -886.0233	more for t	the
4					5		4		7			

Ramesh Gupta

Peak Field Reduction-Lower Peak Fields (both inner & outer) Significantly better

	A
1/2/	XIIA
V	6

	Block #3:	7.96 T		> Block	#3: 7.16	
OLD	> Block #7:	7.75 T	NEW		#7: 7.18	
REFERENCE MAG	MAIN FIELD (T) GNET STRENGTH (T/(m^(n GTH (mm)	-1)) 31.7	036		2.7383 32.9913 1505.6175	
BLOCK NUMBER PEAK FIELD IN CON CURRENT IN CONDUC SUPERCONDUCTOR CO PERCENTAGE ON THE QUENCHFIELD (T)	NG LINEAR JC-APPROX): NDUCTOR 34 (T) CTOR 34 (A) URRENT DENSITY (A/MM2) E LOAD LINE ORT SAMPLE CURRENT		.9586 .0000 .0233 .8207	· · · · · · · · · · · · · · · · · · ·	3 7.1622 -8500.0000 -886.0233	
BLOCK NUMBER PEAK FIELD IN CO CURRENT IN CONDU SUPERCONDUCTOR C PERCENTAGE ON TH QUENCHFIELD (T)	ING LINEAR JC-APPROX): DNDUCTOR 70 (T) JCTOR 70 (A) CURRENT DENSITY (A/MM2) HE LOAD LINE HORT SAMPLE CURRENT		7 .7507 .0000 .0233 .2431 .7286 .3827		7 7.1772 -8500.0000 -886.0233	



June 7, 2022

Ramesh Gupta

Peak Field Reduction – Three cases - Slide 1 (similar peak fields but different end geometries)

Peak Field Reduction – Three cases – Slide 2 (impact of pole blocks of inner and outer ending at different places on peak field)

 Block #3: 7.16 T Block #7: 7.18 T 	 Block #3: 7.15 T Block #7: 6.70 T 	 > Block #3: 6.7 > Block #7: 7.0 	
3D REFERENCE MAIN FIELD (T) 2.7383 REFERENCE MAGNET STRENGTH (T/(m^(n-1))) 32.9913 MAGNETIC LENGTH (mm) 1505.6175 BLOCK NUMBER 34 (T)	2.8144 33.9084 1505.8820	. 2.82 . 34.01 . 1505.91	L99 L38
CURRENT IN CONDUCTOR 34 (A) 7.1622 SUPERCONDUCTOR CURRENT DENSITY (A/MM2 -8500.0000 -886.0233	· I 3 · 7.1537 · -8500.0000	6.74 8500.00	
BLOCK NUMBER 7 PEAK FIELD IN CONDUCTOR 34 (T) 7 CURRENT IN CONDUCTOR 34 (A) 7.1772 SUPERCONDUCTOR CURRENT DENSITY (A/MM2 -8500.0000 -886.0233	. ⊥ 7 . 6.7028 8500.0000	7.03 8500.00	
#7 #3		#7 #3	
Image: StateBrookhaven National Laboratorya1Magnet DivisionRamesh GuptaState	arting of 3-d Optimization of the Magnetic Design of Q2pF	b2sav June 7, 2022	e 10

Techniques for Reducing in Peak Field in the Ends (spread the turns in the end block with high peak fields)

54 08 96

\succ	Block #3:	6.82 T
\succ	Block #7:	6.92 T

Significant reduction in the peak field in the ends

First case: 7.96 T Last case: 7.03 T This case: 6.92 T

3D REFERENCE MAIN FIELD (T)	2.82
REFERENCE MAGNET STRENGTH (T/(m^(n-1))	34.040
MAGNETIC LENGTH (mm)	1505.919
MARGIN CALC (USING JC-FIT):	

SECONDER MARKED STOLE

BLOCK NUMBER	3
PEAK FIELD IN CONDUCTOR 34 (T)	6.8167
CURRENT IN CONDUCTOR 34 (A)	-8500.0000
SUPERCONDUCTOR CURRENT DENSITY (A/MM2)	-886.0233
PERCENTAGE ON THE LOAD LINE	65.0746
QUENCHFIELD (T)	10.4753
TEMPERATURE MARGIN TO QUENCH (K)	3.2089
PERCENTAGE OF SHORT SAMPLE CURRENT	26.1400

MARGIN CALC (USING LINEAR JC-APPROX):	
BLOCK NUMBER	7
PEAK FIELD IN CONDUCTOR 70 (T)	6.9172
CURRENT IN CONDUCTOR 70 (A)	-8500.0000
SUPERCONDUCTOR CURRENT DENSITY (A/MM2)	-886.0233
PERCENTAGE ON THE LOAD LINE	65.9191
QUENCHFIELD (T)	10.4934
PERCENTAGE OF SHORT SAMPLE CURRENT	71.7238

Ramesh Gupta

Initial Optimization of Peak Field and End Harmonics (with inner and outer layers ending at about the same place)

÷ •)

ŧ.	Dijectives											
	No	String	S1	S2	Oper	N/a	Weight					
	1	В	6	1	MINABS 🔻	0	1					
	2	В	10	1	MINABS 💌	0	1					
	3	PEAK3D	3	0	MIN 💌	0	1					
	4	PEAK3D	7	0	MIN 💌	0	1					

Jun 6 09:04 🔹

/home/gupta/EIC/Q2pF+/2022/3D2022May/Q2pF3D-peak-opt03.data]

∄ Design \ Optimiza	/ariables ation algorithm : 1	Extrem			•	?
No	ĸ	Xu	Xs	String	Act	N/a
1	1100	1200	1162.71	ZO	2 🗸	3
2	1100	1200	1118.53	Z0	2 🗸	7
3	5	10	6.2169	WI	2 🔻	7
4	5	10	5.6257	WO	2 🔻	7
5	20	50	45.9788	DZZR	2 🔻	1
6	I10	30	22.7173	DZZR	2 🔻	2
7	10	60	40.2589	DZZR	2 🔻	4
8	10	30	14.6026	DZZR	2 🔻	5
9	10	30	25.6626	DZZR	2 💌	6
#7						
	#3	3 🛄 🛛 🕅				
Ø	Brookhave National Laborator		D-peak-opt03.d	lataj		
lagne	t Division	Ramesh	Gupta	St	arting of 3-	d Op

Block #3: 6.82 T; Block #7: 6.92 T

MARGIN CALC (USING JC-FIT):	
BLOCK NUMBER	3
PEAK FIELD IN CONDUCTOR 34 (T)	
CURRENT IN CONDUCTOR 34 (A)	
SUPERCONDUCTOR CURRENT DENSITY (A/MM2)	-886.0233
PERCENTAGE ON THE LOAD LINE	63.8421
QUENCHFIELD (T)	10.4197
TEMPERATURE MARGIN TO QUENCH (K)	3.2942
PERCENTAGE OF SHORT SAMPLE CURRENT	25.2997

MARGIN CALC (USING LINEAR JC-APPROX):

BLOCK NUMBER	7
PEAK FIELD IN CONDUCTOR 70 (T)	6.9507
CURRENT IN CONDUCTOR 70 (A)	-8500.0000
SUPERCONDUCTOR CURRENT DENSITY (A/MM2)	-886.0233
PERCENTAGE ON THE LOAD LINE	66.1734
QUENCHFIELD (T)	10.5038
PERCENTAGE OF SHORT SAMPLE CURRENT	71.5716

3D REFERENCE MAIN FIELD (T)	2.8559
REFERENCE MAGNET STRENGTH (T/(m^(n-1))	34.4083
MAGNETIC LENGTH (mm)	1506.0212

NORMAL 3D INTEGRAL RELATIVE MULTIPOLES (1.D-4):

b 1:	0.00000	b 2:	10000.00000	b 3:	-0.00000	
b 4:	0.00000	b 5:	0.00000	b 6:	-0.09342	
b 7:	0.00000	b 8:	0.00000	b 9:	0.00000	
b10:	-0.12319	b11:	0.00000	b12:	0.00000	4
b13:	-0.00000	b14:	-0.51991	b15:	-0.00000	
b16:	-0.00000	b17:	0.00000	b18:	0.00995	

Optimization to continue

12