

Q1ApF Cross-section for 2K Operation (one design study)

Ramesh Gupta May 23, 2022

Basic Parameters of the current Q1ApF Design

Parameters from pCDR: Parameters used in the current design:

- Gradient: 72.6 T/m (revised from pCDR, current ~75 T/m)
 - Physical Length: 1.48 m
- Coil inner radius: 71 mm
- Estimated effective length: 1.48 0.071 = -1.4 m
- Estimated gradient in body: 75*1.48/1.4 = -79.3 T/m
- Cable: 15 mm
 - \succ LHC inner type
 - Also used in B1pF/B1ApF
- Cu/SC: 1.6
- Temperature: 2 K

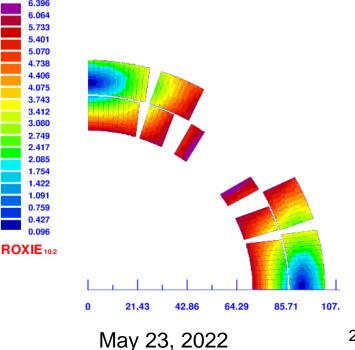


Table 6.2: Parameters of the Q1ApF magnet.

Value

1.46

72.6

0.1120 1×10^{-4}

1.48

0.182

0.182

NbTi

Cable 20×2 mm²

512

1.3

1.8

6.85

360000

360

18

20

1.8

32

Parameter

Magnetic length [m]

Maximum gradient [T/m]

Aperture diameter [m]

Required field quality

Physical length [m]

Physical width [m]

Physical height [m]

Conductor

Cu:Sc ratio

Temperature [K]

Peak field wire [T]

Magnetic energy []]

Ampere turns [kA·t]

Number of turns

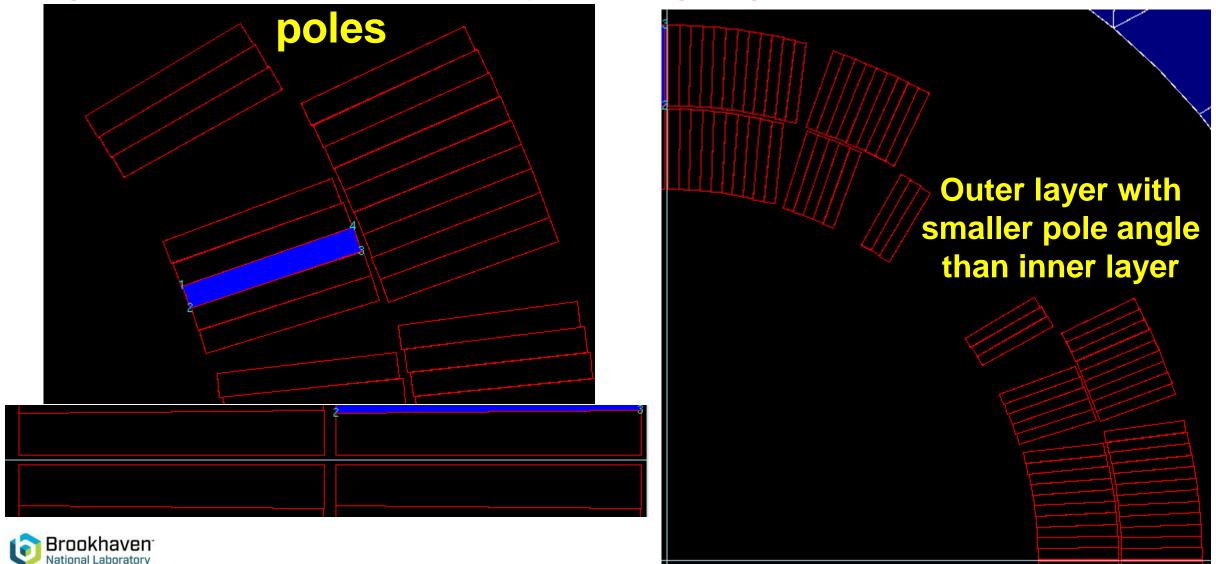
Inductance [mH]

Margin loadline [%]

Current [kA]

Superconductor type

Current density [A/mm]²


Ramesh Gupta

Q1ApF Cross-section Study for 2K Operation

(not fixed, depends on Q1BpF)

Optimization of Coil Geometry (pictorial)

> Angle for poles for collars, two layers, wedges, gap at midplane (+/- 0.25 mm)

Magnet Division Ramesh Gupta

Midplane

Q1ApF Cross-section Study for 2K Operation

May 23, 2022

Optimization of Coil Geometry – ROXIE Input

Input to coil	aeometrv
	geeneary

Xroxie [/home/gupta/EIC/cable15mm/Q1ApF/05r-Q1APF-b1b-NON-IP10kA.data]

<u>F</u>ile <u>E</u>dit <u>D</u>isplay R<u>u</u>n

Comment: Q1APF 15mm EIC-LHC-B cable@2K, 30 mm collar RG

Main Options		
🔟 3D geometry (LEND)	📕 Endspacers (LWEDG)	Time transient (LPERS)
Quench simulation (LQUENCH)	Optimization (LALGO)	
Cable data path : /home/gupta/EI	C/aphlo15mm/010nE/novi	a aig gadata Proves
capie uata paur: / nome/qupta/b.	re/capieromm/@impr/rexi	Le-eic.cadata Browse

Fields & forces in coil (LPEAK)	🔲 Margin to linear Jc-approx. (LINMARG)	📕 Margin to Jc-fit (LMARG)
Self field in strands (LSELF)	🔟 Enthalpy margins (LMQE)	Inductance and energy (LINDU)
Cable eddy currents (LEDDY)	Axi-symmetry (for solenoids) (LSOLE)	

🖻 Block Data 2D

N	o Type		NCab	R	•	a	Current	Cable name
	1 Cos	•	10	71	0.2017	0	10000	EICLHCB2K -
	2 Cos	•	5	71	17.518	20	10000	EICLHCB2K -
	3 Cos	•	3	71	30.897	32	10000	EICLHCB2K -
	4 Cos	-	12	87	0.1646	0	10000	EICLHCB2K -
	5 Cos	•	9	87	17.518	25	10000	EICLHCB2K -

Midplane half-gap = 0.25 mm (both layers)

(†	🕣 Design Variables										
I	Optim	ization algorithm : 1	Extrem			▼ ?					
	No	×	Xu	Xs	String	Act	N/a				
	1	1	5	1.43	PHIR	2 💌	2				
	2	10	14	10.7145	ALPHR	2 💌	2				
	3	1	9	5.0778	PHIR	2 💌	3				
	4	6	9	8.8244	ALPHR	2 🔻	3				
	5	1	7	1.3611	PHIR	2 🔻	5				
[6	12	12	12	ALPHR	2 💌	5				

	File	Dis	play													
	F I	Insulation														
	Г	No	Name		Radial	Azimut	Comment			8						
		1	BARE		0	0	BARE					Cab				
	Ē	2	ALLPOL	YIL	0.15	0.12	POLYIM	ID MB IN	NNER			Cur				
	Ē	3	ALLPOL	YOL	0.15	0.13	POLYIM	ID MB OU	JTER							
	Ē	4	ALLPOL	MQY	0.08	0.08	POLYIM	ID MQY,N	MQM		n s	rama	store			
		5	ALLPOL	MQ	0.13	0.11	POLYIM	ID MQ				irame	51013			
	ſ J	lc-Fit														
		No	Name	Туре		СІ	C2	С	з с	4 0	5 C6	C7	C8			
		1	FIT1	1	▼ 3E+	9 9	.2	0.5	7 0.1	9 2.3	2 27.04	14.5	0			
		2	TES1	1	▼ 3E+	09 9	.2	0.5	7 0.1	9 2.3	2 27.04	14.5	0			
w file		3	GSIFIT	1	▼ 3E+	09 9	.2	0.1	7 1.5	7	1 25	14.5	0			
		4	SISFIT	1	▼3E+	09 9.335	17	0.6	8 0.847	7 2.2323	4 25	14.5	0			
l	F F	ilame	ent													
	Г	No Name fildiao			fildiai	Jc-Fit	Comment			1						
		1	TESTI1		6	0	TES1	NBTI I	NNER CABLES	A						
		2	TEST01		5	0	TES1	NBTI I	NNER CABLES							
		3	NBTII		7	0	FIT1	NBTI I	NNER CABLES							
		4	NBTIO		6	0	FIT1	NBTI O	UTER CABLES							
		5	NB3SN		22	12	FIT1	NB2SN T	WENTE							

Strand No Name diam. cu/sc BBB Tref Bref Jc@BrTr dJc/dB Comment 1 STREIC1 1.065 1.6 70 1.9 10 1591 500.34 EIC BRUKER-CERN SCALED,7%DEGRA 1.065 70 500.34 MB INNER 2 STR01 1.6 1.9 10 1433.3 3 STR02 0.825 1.9 80 1.9 1953 550.03 MB OUTER, MQ 9 4 WIRE3 0.93683 1.6 70 4.222 5 2640 606.8 MCS, MCD, MQT? 5 GSI1STRA 0.648 2.21 187 4.2 5.5 2495.24 583.898 GSI001 (RHIC) STRANDS

Transient

View

Ţ	Quench	Material	Propertie

Cable (Geometry							
No	Name	height	width_i	width_o	ns	transp.	degrd Comment	1
1	EICLHCB	15.1	1.816	1.984	28	115	5 LHC IN KEYSTOE FOR EIC DIPOLE	
1	EICLHCQ	15.1	1.79	2.01	28	115	5 LHC IN KEYSTONE FOR EICIR QUA	D
1	EICLHC01	15.1	1.786	2.014	28	115	5 LHC CABLE KEYSTOR FOR EIC 4.2	K
2	EIC3642	19.4	1.773	2.027	36	115	3 EIC 36 STRAND @4.2K	
3 1	EIC3618	19.4	1.773	2.027	36	115	3 EIC 36 STRAND @1.8K	

🕞 Cable Definition

- 11									
	1	lo Name	Cable Geom.	Strand	Filament	Insul	Trans	Quench Mat.	T_o Comment
		1 EICLHCB2K	EICLHCB	STREIC1	NBTII	ALLPOLYIL	TRANS1	NONE	2 LHC INNER FOR EIC IR Dipole@2K 🔼
		2 EICLHCQ2K	EICLHCQ	STREIC1	NBTII	ALLPOLYIL	TRANS1	NONE	2 LHC INNER FOR EIC IR Quad @2K
		3 LHCIN42K	EICLHC01	STREIC1	NBTII	ALLPOLYIL	TRANS1	NONE	4.2 LHC INNER FOR EIC @4.2K
		4 YELLONIN	CABLE01	STR01	NBTII	ALLPOLYIL	TRANS1	NONE	1.9 V6-1 DESIGN DIPOLE INNER
		5 YELLONOU	CABLE02	STR02	NBTIO	ALLPOLYOL	TRANS1	NONE	1.9 V6-1 DESIGN DIPOLE OUTER

Ramesh Gupta

Q1ApF Cross-section Study for 2K Operation

May 23, 2022

Quench Margin in the X-section of the Q2pF @2K

		Margin to quench (%)	
MAIN FIELD (T) MAGNET STRENGTH (T/(m^(n-1))	-3.384763		
BLOCK NUMBER	23	91.74 88.79 85.84	
PEAK FIELD IN CONDUCTOR 156 (T)	6.3964	82.88	
CURRENT IN CONDUCTOR 156 (A)	10000.0000 5.0786	76.98	
SUPERCONDUCTOR CURRENT DENSITY (A/MM2)	1042.3804	71.07	
COPPER CURRENT DENSITY (A/MM2) PERCENTAGE ON THE LOAD LINE	651.4877 64.3614	68.12 65.16	
QUENCHFIELD (T)	9.9383	62.21 59.26	
TEMPERATURE MARGIN TO QUENCH (K)	3.2390 28.3054	56.31 53.35	
		50.40	
Operational margin = 100/64.4 = >55°	%	47.45	
Pocall 75 T/m moant and optimated into	aral of	41.54 38.59	
Recall 75 T/m meant and estimated inte	yiai Ui	35.63	
79.3 T/m. We have a healthy margin		ROXIE 10.2	

Should be able to operate @80 T/m

(~84.6 T/m in body), with a good margin

Ramesh Gupta

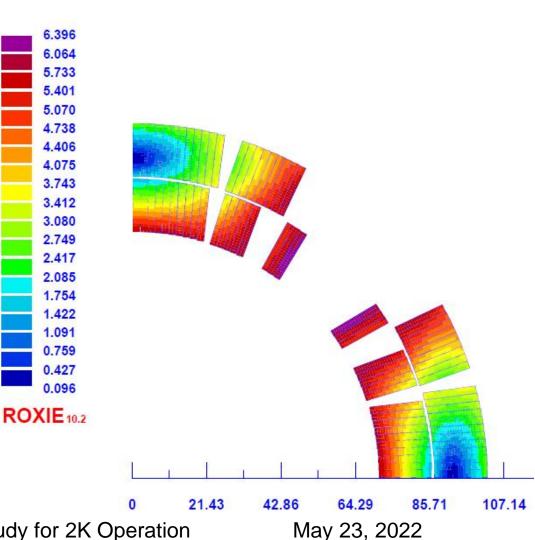
Q1ApF Cross-section Study for 2K Operation

64.29

42.86

21.43

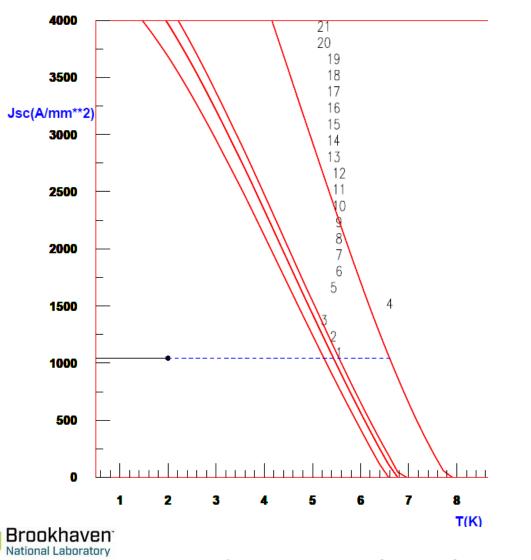
107.14

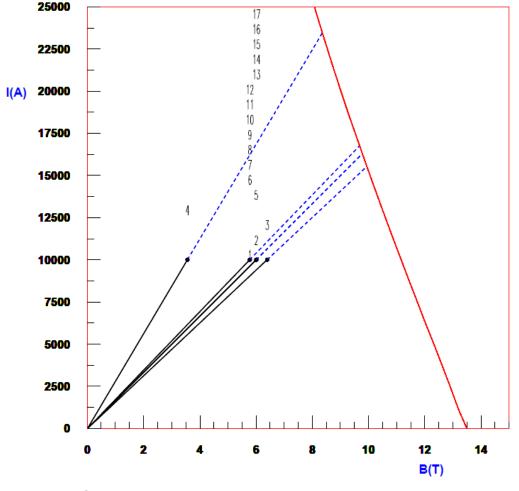

85.71

Quench Margin in the Current X-section of the Q1ApF

Peak Field Enhancement

- Field gradient = 79.8 T/m (@10kA)
- Coil Radius = 71 mm
- Computed midplane field at coil radius = 0.071 * 79.83 = 5.668 T
- Peak field enhancement = 6.396/5.668 = 12.8%


Making outer layer smaller than inner layer reduces peak field significantly |B| (T)


Q1ApF Cross-section Study for 2K Operation

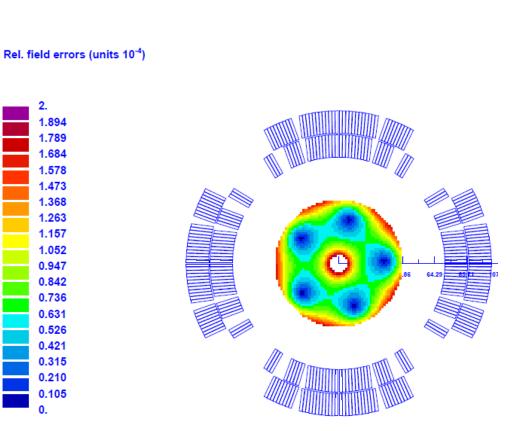
Quench Margin in the Current X-section of the Q1ApF at 2 K

Q1APF 15mm EIC-LHC-B cable2K, 30 mm collar RG

22/04/27 14:44

Ramesh Gupta

Magnet Division


Q1ApF Cross-section Study for 2K Operation

May 23, 2022

Field Quality (Geometric Harmonics @2kA)

GOAL: Obtain low field harmonics in a geometry which is good mechanically

Field quality at 2kA

Note: Above plot is at 10 kA

Ramesh Gupta

Brookhaven

Magnet Division

HARMONIC ANALYSIS NUMBER	
REFERENCE RADIUS (mm)	42.4000
X-POSITION OF THE HARMONIC COIL (mm)	0.0000
Y-POSITION OF THE HARMONIC COIL (mm)	0.0000
MEASUREMENT TYPE ALL FIELD CONT	RIBUTIONS
ERROR OF HARMONIC ANALYSIS OF Br	.6637E-05
SUM (Br(p) - SUM (An cos(np) + Bn sin(np))	

MAIN FIELD (T) .		-0.684996
MAGNET STRENGTH	(T/(m^(n-1))	-16.1556

NORMAL RELATIVE MULTIPOLES (1.D-4):

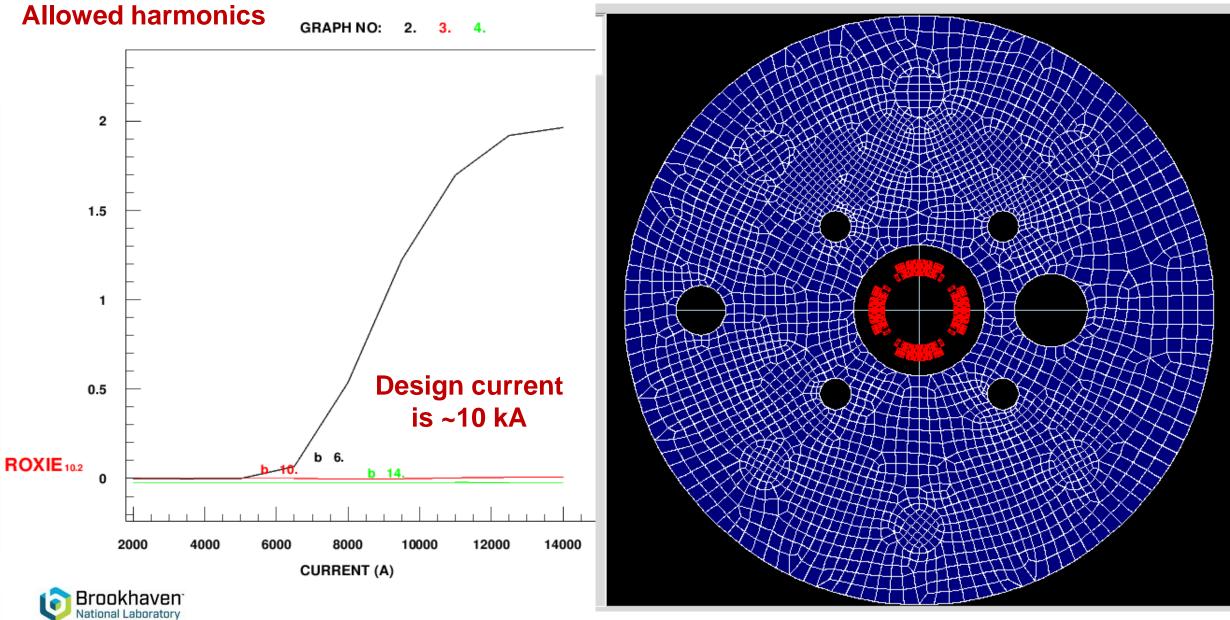
b 1:	-0.08823	b 2:	10000.00000	b 3:	-0.00288
b 4:	-0.00176	b 5:	-0.00101	b 6:	-0.00053
b 7:	-0.00004	b 8:	-0.00001	b 9:	-0.00000
b10:	0.00002	b11:	-0.00000	b12:	0.00000
b13:	-0.00000	b14:	-0.02185	b15:	-0.00000
b16:	-0.00000	b17:	0.00000	b18:	0.00290
b19:	0.00000	b20:	-0.00000	b	

> All geometric harmonics are small

Q1ApF Cross-section Study for 2K Operation

Saturation-induced Harmonics (examine the impact of non-liner properties of iron at high fields)

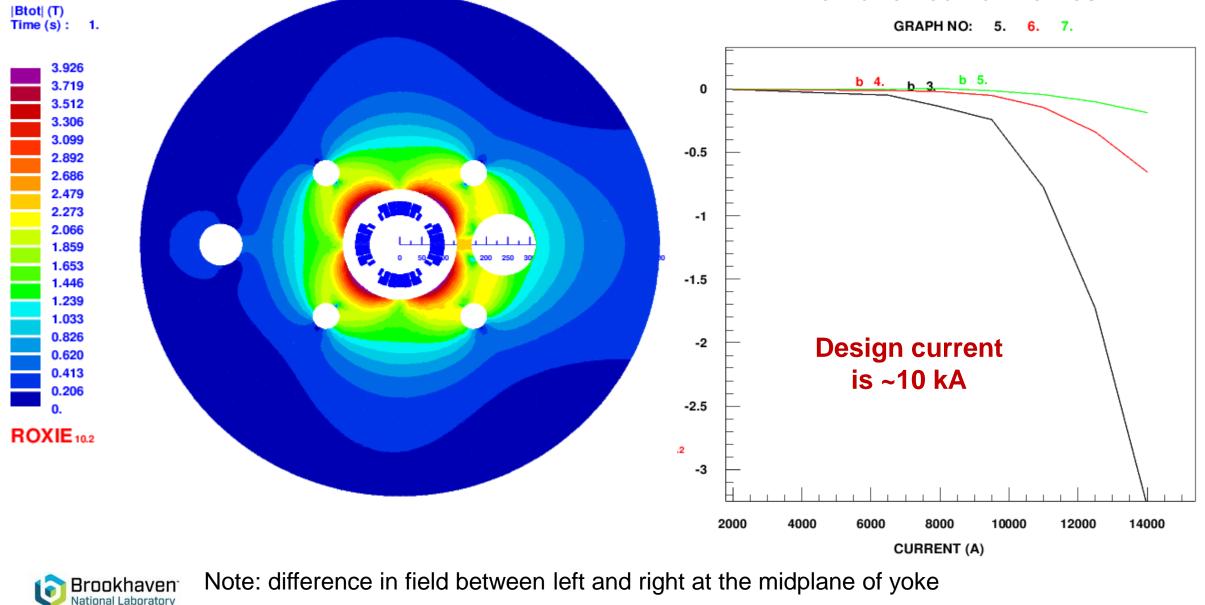
Current nominal operating range of EIC (Holger Witte): 41 GeV to 275 GeV Minimum to Maximum Ratio: 1 to 6.7; Maximum current: ~10 kA


(Note: Optimization of yoke with holes, and onion ring, etc. not done yet)

Q1ApF Cross-section Study for 2K Operation

May 23, 2022

Field quality in operating range (saturation-induced harmonics)



Ramesh Gupta

Magnet Division

Q1ApF Cross-section Study for 2K Operation

Field quality in operating range (saturation-induced harmonics) Non-allowed harmonics

Ramesh Gupta

Magnet Division

Q1ApF Cross-section Study for 2K Operation

May 23, 2022