

Performance of a test coil wound from defecttolerant second-generation cable

Vyacheslav Solovyov¹, Ramesh Gupta², William Sampson², Anis Ben Yahia², Makoto Takayasu³ and Paul Farrell¹

¹Brookhaven Technology Group Inc., Stony Brook, NY 11794

www.brookhaventech.com

²Brookhaven National Laboratory, Upton, NY 11973 ³Massachussets Institute for Technology, Cambridge, MA 11794

Supported by U.S. DOE Office of Science awards DE-SC0018737 and DE-SC0020832

Outline

- Motivation: we need to overcome non-uniformity of 2G conductors
- Demonstration of defect tolerance
- Effect of compressive strain on reliability of YBCO layer
- Conclusion and future work

Uniformity challenge of 2G technology

We need averaging of properties within the cable

Defect—tolerant, low AC loss cable

- Single-filament magnets proven difficult to protect against burnout
- Substrate prevents efficient current sharing, especially in narrow, low AC loss cables
- Multifilamentary cable is far more expensive than a single tape

BTG exfoliated filament stack

Infinite length, splice-free narrow cable

- Human handling < 1 mm filaments is next to impossible</p>
- Only wide, 10-12 mm tape is spliced and handled

20 0.5 mm filaments

Low-profile mechanical bonding of filaments

Low-profile mechanically strong bond: simulated "break"

MT 27 Magnet Technology Conference, November 18 2021

Fusing the filaments during the coil winding

CO2 laser

Hot air stream

Cable needs to be fused right before it is laid on the coilform
Air blade method did not degrade I_c and provided the lowest contact resistance

Critical role of filament fusion

 Unfused filaments have negligible current sharing: just mechanical contact resistance is very high

Demonstration coil: 4 filaments, layer wound, break in each filament

As wound coil

After impregnation

Demo coil:

- 5 meters of 2 mm 4 filament cable
- Each filament has a break
- 10 cm ID

Demo coil test at 77 K and 4.2 K

MT 27 Magnet Technology Conference, November 18 2021

Application: high current ripple filter for cryogenic power supply

Superconducting ripple filter in the cryochamber

 Reliable operation in conduction-cooled mode under high AC ripple load because of narrow defect-tolerant cable

The proposed simple test/standard for HTS cable defect tolerance

- Cuts staggered at an average distance d from each other
- Both *n*-value and *I_c* are measured as a function of *d*
- The critical d value, d_c, at which 90% of the cable performance, n-value and I_c, is restored
- For narrow 2G cable we estimate $d_c < 5$ m

Summary

- Defect tolerance can be achieved if resistivity between the filaments on the order of 100 n Ω cm^2
- Mechanical contact unreliable, rapid solder fusion is critical
- We demonstrated defect tolerance by making a demo coil with each filament cut on purpose
- The coil operated up to 1,600 A (2,000 A/mm²) at 4.2 K
- We propose a standard for defect-tolerance of 2G cables

