

Superconducting Magnet Division

Magnet Note

Author: R. Gupta

ъ

Date: March 31,2000

Topic No: 591-33 (AM-MD-292)

Topic: Common Coil Design

 Title:
 Superconducting Magnets for Future Colliders and Storage Rings

 http://magnets.rhic.bnl.gov/gupta

M. Anerella	S. Ozaki (c)
A. Blake (c)	B. Parker
J. Cozzolino	S. Peggs
J. Escallier (c)	F. Pilat (c)
G. Ganetis	S. Plate (c)
M. Garber (c)	C. Porretto (c)
A. Ghosh	W. Sampson(c)
R. Gupta	J. Schmalzle (c)
H. Hahn (c)	G. Sintchak (c)
M. Harrison	J. Sondericker(c)
J. Herrera	S. Tepikian (c)
A. Jain	R. Thomas (c)
P. Joshi (c)	D. Trbojevic (c)
S. Kahn	P. Wanderer
W. Louie (c)	J. Wei
G. Morgan (c)	T. Wild (c)
J. Muratore (c)	E. Willen

BROOKHAVEN ATIONAL LABORATORY Superconducting Magnet Division	High Temperature Supercon in Accelerator Ma	ductors (HTS) gnets
 HTS in ad is leading 	ccelerator magnets: An exciting pos this initiative	sibility, BNL
 Applicati 	ons: vlhc & muon colliders/storage	rings
 May allo higher he 	w higher fields, higher operating ten at loads and less stringent operating	nperature, conditions
 However suited fc 	, the conventional magnet designs a e (1 is too brittle for them)	re not well
		A COUNTRACTOR
	End of a conventional magnet	
649	Baneth Gu	to

BROOKHAVEN NATIONAL LABORATORY Superconducting Magnet Division	f Common Coil Magnet System ntures (2-in-1 Accelerator)
• Large Dynamic Range -150 instead of usual 8-20	• Compact Magnet System As compared to single aperture DZO, 4 apertures in less than half the yoke.
May eliminate the need of the second largest ring Significant saving in the cost & VLHC acceleratorcomplex	 Possible Reduction in High Field Aperture
• Good Field Quality (throughout)	Beam is transferred, not injected - no wait, no snap-back. Minimum field seenby high field aperture is -1.5 T and not ~0.5 T.
Low Field Iton Dominated High Field Conductor Dominated	The basic machine criteria are changed! Can high field aperture be reduced?
Good field quality from injection to highest field with a single power supply.	Reductionin high field aperture => reductionin conductor & magnet cmt.
17/49	amath Gunta DNN AD 5 4 h 23, 1

BROOKHAVEN ATIONAL LABORATORY Superconductin Magnet Division	Magnet Aperture: MT and AP Issues
Main magnet apert	ure has an appreciable impact on the machine cost. The minimum
requirements are go	overned by the following two issues:
Magnet Techno	ology Issues
The wnventional cos radius and the end get the magnet aperture a than that in the conver- is much larger, as it i aperture itself. This r	sine theta magnets are hard to build below certain apertureas the bend ometry would limit the magnet performance. In the common coil design, and magnet ends are completely do-coupled. The situation is even better entional block designs as not only that the ends are 2 d but the bend radius s detennined by the spacing between the two apertures rather than the nears that the magnet technology will not limit the dipole aperture.
Accelerator Pl	nysics Issues
The proposed common decided by the inject injected) in a singlet	n coll system should have a favorable impact. The aperture is generally ion conditions. In the proposed system, the beam is transferred (not urn, on the fly, and the transfer takes place at a higher field. The magnets

 $\left\{ \hat{\chi}^{(2)}_{\mu\nu} \right\}_{\mu}$

BROOKHAVEN NATIONAL LABORATORY Superconducting Magnet Division	A Combin Magnet S	ed Function Con ystem for Lowe	nmon Coil er Cost VLHC
n a XO T	ei cù ; r ia	design, the gl side of	the coil return on the le
A	High Ene	rgy Booster	
A combined magnet	n the right	antier)	
Therefore, combined	function	16 10	
nagnets are possible : ow and high field apo	for both ertures.		Main Ring
Note: Only the layou higher energy and low	uts of the ver energy		
nachines are same. T 'Lattice" of the two r	he ings could	ವೇಜರಾತ	
e different.		A Address of the	V ^{init} 100
		a limit	

Magnet Div	Common Coil Work	at BNL- Phase II
Charge:		The Team:
	Continue Innovative Magnet Research	M. Anerella
I	Design Field: 12.5 T	J. Cozzolino
(Conductor:Nb3Sn (HTS in future magnets)	J. Escallier
1	Fechnology: React and Wind	G. Ganetis
Challenge	<u>s:</u>	A. Ghosh
I	High Field A Good Engineering Design is Critic	R. Gupta
I	Resources: Limited	M. Harrison
Strengths:		G. Morgan
I	Demonstrated skills in designing and building co effectivehigh quality magnets	B. Parker
I	History in carrying out innovative magnet resear	w. Sampson
t Miles	hat defines the field	P. Wanderer
26/49	· · · · ·	Remesh Gunte RNI AP Seminor March 23

LC HA U De Baan Lagnet Division	A Possibl URHIC: U	e Application of High Itra Relativistic Heavy I	Field Magnet Progr on Collider in RHIC Tun
URHIC Heavy Ions Protons	500 GeV + 500 GeV 1 25 TeV + 1 25 Te	/(1 TeV center of mass) V (2 5 TeV center of mass)	
		RHIC	URHIC
En	ergy (GeV/u)	100 GeV+100 GeV	500 GeV + 500 GeV
Inj	ector	AGS	RHIC
La	ttice	Separated Function	Combined Function
Di	pole Fill Factor	6 5 % (+quad)	~85-90% (no quad)
Di	pole Design	Cosine Theta	Common Coil
Op	erating Field	3 5 T	- 13T
			Physics Potential?
1 × 1 × 18/49			a. Ohli 40 Cambra Manak

ath Gente BNIL AP 3

. .

4

9