

Persistent Currents in RHIC Dipoles Measurements and Calculations (continued)

Ramesh Gupta
December 20, 2022

@BrookhavenLab

Introduction

- Modelling of superconductor properties for persistent current calculations
 - ➤ Morgan curves (used in RHIC/SSC designs)
 - Bottura curves (used in ROXIE)
 - Several email exchanges with Luca Bottura on converting one to another
- Impact of previous cycles on RHIC dipole (calculations and measurements)

December 20, 2022

Bottura Fitting and Morgan Fitting

A Practical Fit for the Critical Surface of NbTi

L. Bottura CERN, LHC Division, 1211 Geneva 23, Switzerland

Abstract—Known expressions for the critical temperature, critical field and Pinning force in NbTi are combined into a self-consistent fit formula that provides the critical current density

strain. The function chosen here for the fit of surface as a function of the reduced parameters given by:

Bottura - From [1] with $B_{c2}(T) = B_{c20}(1 - (T/T_{c0})^{1.7})$,

$$J_c(B, T) = \frac{J_{c,ref} C_0 B^{\alpha-1}}{(B_{c2}(T))^{\alpha}} \left(1 - \frac{B}{B_{c2}(T)}\right)^{\beta} \left(1 - \left(\frac{T}{T_{c0}}\right)^{1.7}\right)^{\gamma}$$

(as used in ROXIE)

Author: G. Morgan

Date: January 6, 1997

No: 560-1 (RHIC-MD-261)

Task Force: Coil Geometry Analysis

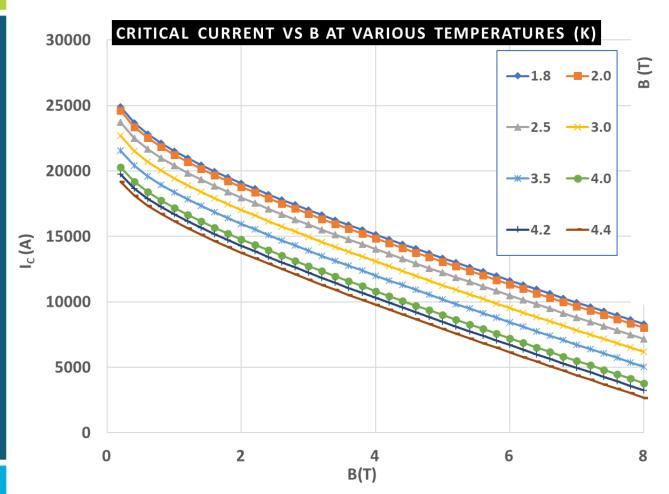
Title: A New Critical Surface for RHIC NbTi

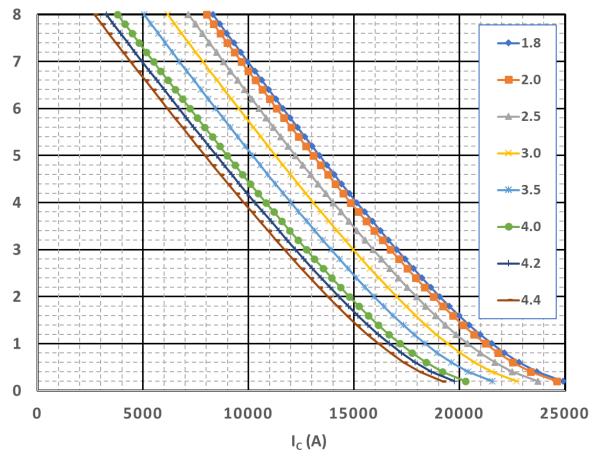
$$F_p - C_1 \cdot B_{C2}^m(T) \cdot (B/B_{C2})^p \cdot (1 - B/B_{C2}(T))^q$$

$$F_p = J_C B$$
, $B_{C2} = B_{C0} \cdot (1 - (T/T_C)^E)$

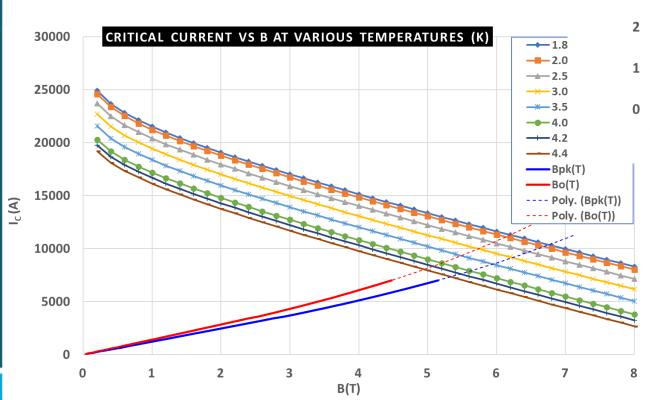
$$C_1 \qquad m \qquad p \qquad q \qquad B_{C0} \qquad T_C \qquad E$$
106.13 1.73 0.948 1.000 14.45 8.66 1.61

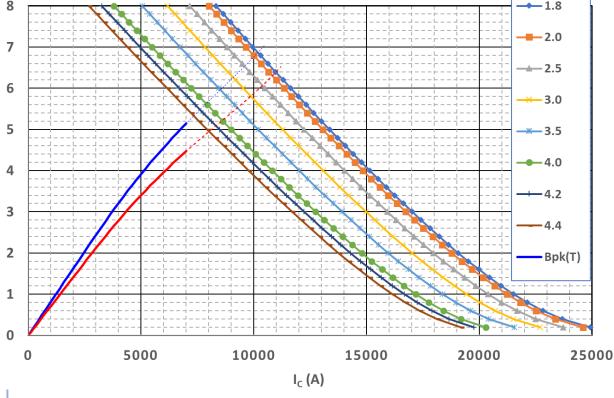
 $Jc = C1 \cdot Bc2(T) ^m \cdot B^(p-1) / Bc2 ^p \cdot (1-B/Bc2(T))^q$


Morgan Curves


RHIC data		
Wire Diameter (in)	0.0255	
Wire Diameter (mm)	0.6477	
Wire Area (mm^2)	0.329487	
Wire Ic (4.2K,5T), A	293	
Wire Jc (4.2K,5T), A/mm^2	889.3	
Cu/SC ratio	2.2	
SC Area	0.102965	
Wire Jsc (4.2K,5T), A/mm^2	2845.6	
Number of Wires in cable	30	
Cable Ic (no degradation), A	8790	
Measuured Cable Ic(4.2K,5T)	8475	
Degradation (%)	3.6	

		Bc2(T)		Bc2(T)	Bc2(T) Bc2(T) Bc2(T) Bc2(T)					
		13.298		12.495 11.82		11.0894				
		lc	lc	lc	le	le	lc	lc	lc	
T(K)=>	B(T)	1.8	2.0	2.5	3.0	3.5	4.0	4.2	4.4	<=T(K)
	0.2	24918.5	24599.8	23710.6	22694.1	21553.5	20289.2	19748.5	19187.5	
	0.4	23669.3	23360.6		21514.2	20408.6	19182.7	18658.3	18114.1	
	0.6	22816.1	22512.6	21665.5	20696.7	19608.9	18402.4	17886.1	17350.3	
	0.8	22123.3	21823	20984.9	20026.2	18949.4	17754.7	17243.4	16712.5	
	1	21518.2	21220.1	20388.1	19436.1	18366.7	17179.8	16671.6	16143.9	
	1.2	20968.5		19844.3	18897.1	17832.8	16651	16145	15619.4	
	1.4	20457.2	20161.8	19337.3	18393.5	17332.7	16154.4	15649.7	15125.4	
	1.6	19974.1	19679.6	18857.3	17915.9	16857.4	15681.4	15177.6	14654.1	
	1.8	19512.8	19218.9	18398.1	17458.3	16401.4	15226.7	14723.3	14200.1	
	2	19068.6	18775.1	17955.4	17016.6	15960.6	14786.5	14283.2	13760.1	
	2.2	18638.4	18345.2	17526.2	16587.9	15532.2	14358.2	13854.7	13331.4	
	2.4	18219.9	17926.8	17108.1	16170	15114.2	13939.7	13435.9	12912.1	
	2.6	17811.3	17518.2	16699.5	15761.3	14705	13529.6	13025.3	12500.9	
	2.8	17411	17118	16299.1	15360.4	14303.4	13126.8	12621.8	12096.7	
	3	17018.2	16725	15905.7	14966.3	13908.3	12730.2	12224.5	11698.5	
	3.2	16631.8	16338.4	15518.5	14578.2	13519	12339.1	11832.5	11305.5	
	3.4	16251	15957.4	15136.8	14195.5	13134.8	11953	11445.4	10917.3	
	3.6	15875.4	15581.5	14760	13817.5	12755.2	11571.3	11062.7	10533.4	
	3.8	15504.4	15210.2	14387.6	13443.8	12379.7	11193.5	10683.8	10153.2	
	4	15137.5	14842.9	14019.2	13073.9	12008	10819.3	10308.4	9776.56	
	4.2	14774.3	14479.4	13654.5	12707.6	11639.6	10448.4	9936.23	9403.04	
	4.4	14414.6	14119.2	13293	12344.5	11274.4	10080.4	9567.02	9032.41	
	4.6	14058.1	13762.2	12934.7	11984.4	10912.1	9715.29	9200.53		
	4.8	13704.5	13408.1	12579.2	11627.1	10552.4	9352.69			
	5	13353.6	13056.7	12226.2	11272.2	10195.2	8992.45			
	5.2	13005.2	12707.8	11875.7	10919.8	9840.26	8634.42	8115.43	7574.68	
	5.4	12659.1	12361.2	11527.5	10569.5	9487.45		7757.98	7215.61	
	5.6	12315.2	12016.7	11181.4	10221.3	9136,65	7924.4	7402.42	6858.4	
	5.8	11973.4	11674.3	10837.3	9875.01	8787.72	7572.17	7048.65	6502.95	
	6	11633.5	11333.8	10495	9530.56	8440.55		6696.56	6149.15	
	6.2	11295.4	10995.1	10154.5	9187.82	8095.04		6346.06	5796.92	
	6.4	10959	10658.1	9815.66	8846.7	7751.11		5997.05	5446.16	
	6.6	10624.3	10322.7		8507.11	7408.67	6179.37	5649.47	5096.8	
	6.8	10291.1	9988.86		8168.98	7067.64	5834.78		4748.77	
	7		9656.44		7832.22	6727.95			4402.01	
	7.2	9628.9	9325.38		7496.79	6389.54	5149.44	4614.55	4056.45	
	7.4	9299.83		8143.5	7162.6	6052.36	4808.58	4271.99	3712.04	
	7.6	8972.03		7813	6829.61	5716.33	4468.84		3368.74	
	7.8	8645.42		7483.66	6497.76	5381.42	4130.19	3590.17	3026.49	
	8	8319.97	8013.68	7155.44	6167.01	5047.57	3792.57	3250.81	2685.25	


Morgan Curves



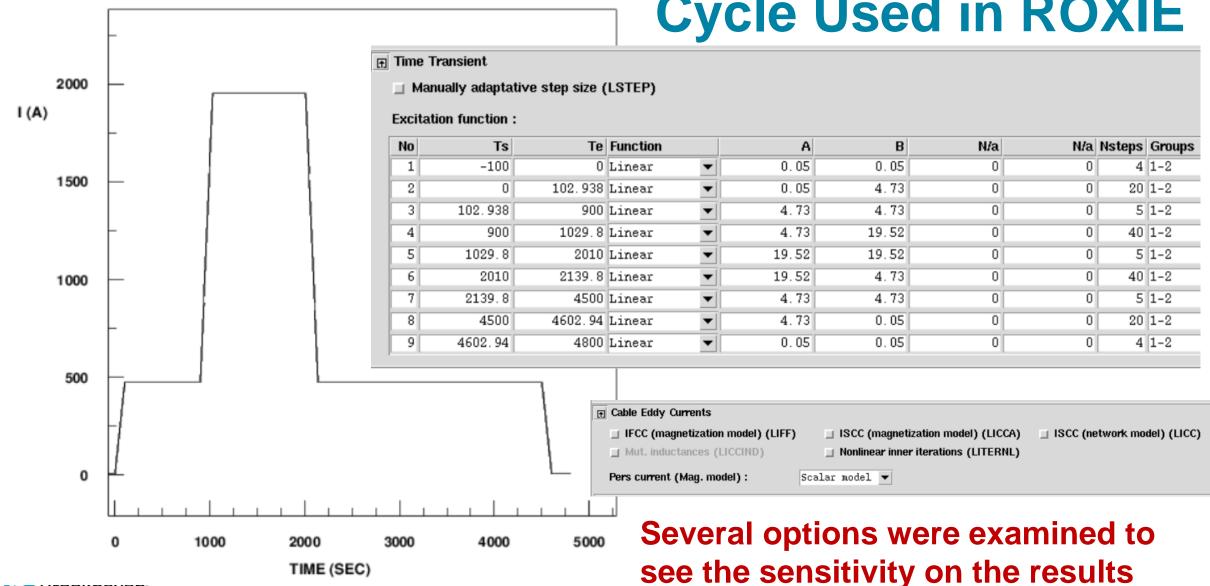
Morgan Curves as used in the design calculations

These can also be used in the persistent current calculations.

However, ROXIE doesn't have that as an option (requested to include in the next version).

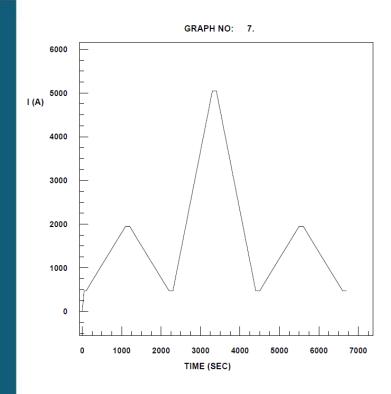
Bottura Curves

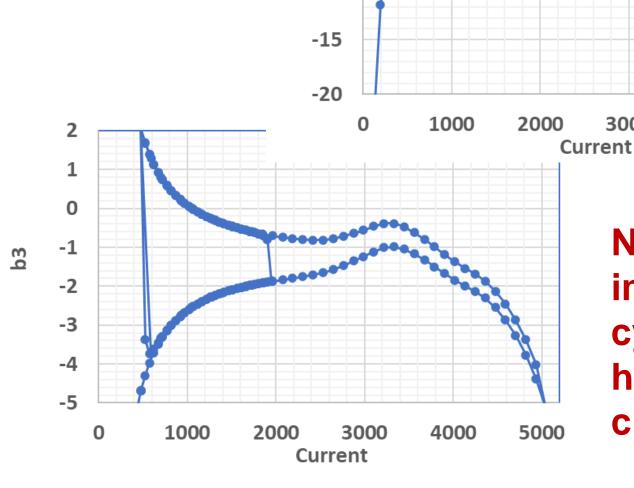
Bottura - From [1] with $B_{c2}(T) = B_{c20}(1 - (T/T_{c0})^{1.7})$,


$$J_{\rm c}(B,T) = \frac{J_{\rm c,ref} \ C_0 B^{\alpha-1}}{(B_{c2}(T))^{\alpha}} \left(1 - \frac{B}{B_{c2}(T)}\right)^{\beta} \left(1 - \left(\frac{T}{T_{c0}}\right)^{1.7}\right)^{\gamma}.$$

			ve SSC Fit	Bottura cui	Fitting for
	LHC	RHIC (try)	RHIC (paper)		
0E+09	3.00E+	3.00E+09	3.00E+09	C1	Jc
9.2	9	8.66	9.2	C2	Tc0
0.57	0.	0.948	0.89	C3	α
0.9	(1	1.1	C4	β
2.32	2.	1.73	2.09	C5	γ
27.04	27.	33.25	37.7	C6	Co
14.5	14	14.45	14.4	C7	Bc2o
_		33.25	37.7	C6	Co

Persistent Current Cycle Used in ROXIE


TIME (SEC)


Impact of previous cycles on RHIC dipole

Qualitative agreement between ROXIE calculations and measurements on the spread of harmonic errors between up and down ramp (not decay or snapback yet)

ROXIE Calculations (not with the latest fig

5

0

-5

-10

4000

5000

3000

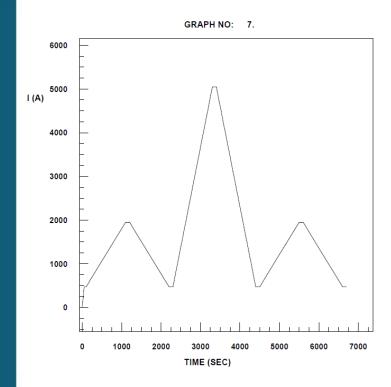
ROXIE Calculations (not with the latest fit)

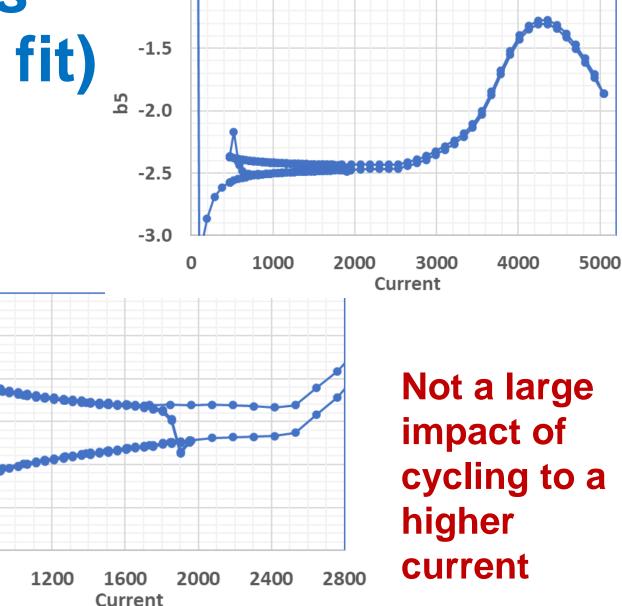
-2.3

-2.4

-2.4

-2.5

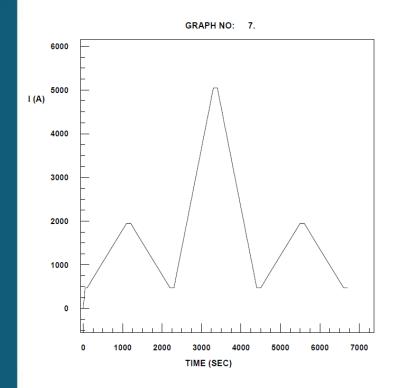

-2.6

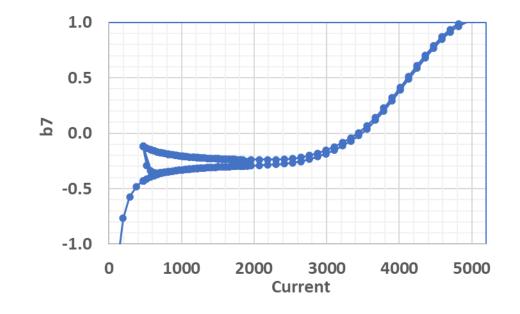

-2.6

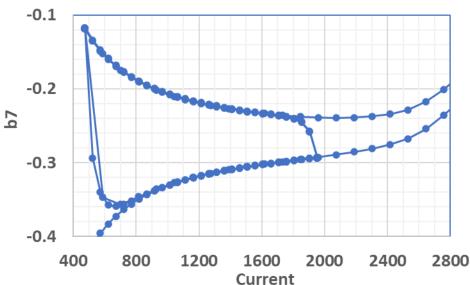
400

800

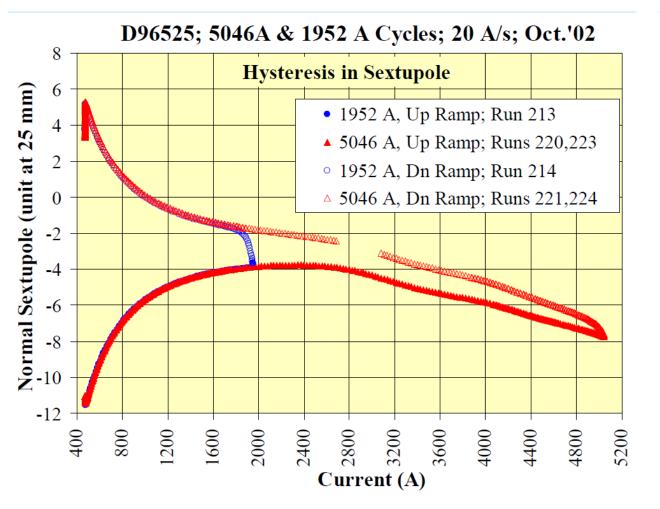
요 -2.5

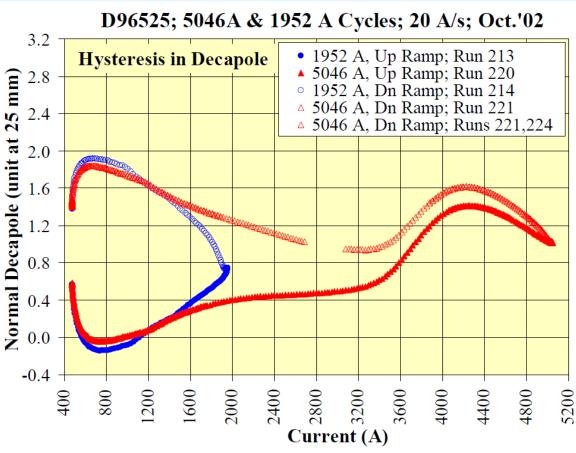





-1.0

ROXIE Calculations (not with the latest fit)





Not a large impact of cycling to a higher current

Measurements

Not a large impact of cycling to a higher current

