Cross-talk Control between Q1BpF & Q1eF (Impact on Field Harmonics) Ramesh Gupta Superconducting Magnet Division April 20, 2021 a passion for discovery

Overview

- Study of field harmonics in electron quad (Q1eF) and in ion quad (Q1BpF) to evaluate cross-talk between the two
- Step by step approach
 - 1. Field harmonics in both quads at low fields
 - 2. Field harmonics in both quads as a function of current
 - **3.** Field harmonics in both quad as separation changes
 - 4. Sensitivity of correctors on harmonic reduction
- The goal is that harmonics remain low in both quads
- To develop and optimize a good approach for reducing harmonics as quickly as possible, first proceed with 2-d analysis (although different locations gives a 3-d flavor)

April 19, 2021

BROOKHAVEN NATIONAL LABORATORY Superconducting Magnet Division Basic Model to Demonstrate that Cross-talk in e-quad can be reduced

Cutout in the yoke where other hardware can be inserted Cutout in the yoke where other hardware can be inserted (with rounded corners for the cutout) (with rounded corners for the cutout) April 19, 2021 Cross-talk control between O1BpF with O1eF for 4K Operation EIC IR Meeting -Ramesh 3

Field Harmonics at Low Excitation in Ion Quad

With a reasonable mesh, low field harmonics are close to zero. Note: b_6 and b_{10} are allowed harmonics and they may be real

April 19, 2021

Cross-talk control between Q1BpF with Q1eF for 4K Operation

EIC IR Meeting

Field Harmonics at Low Excitation in electron Quad

With a reasonable mesh, low field harmonics are close to zero b_6 and b_{10} are allowed harmonics and they may be real

Harmonics as a function of Excitation in e-quad

Design gradients

- ion-quad (pGrad): 66.2 T/m
- e-quad (eGrad): 8 T/m (?)

Harmonics are reasonably small in a design optimized as a proof-of-principle design only (with a corrector, as presented earlier)

Can be reduced in a more optimized design

eCASE	CUR (A)	pGrad(T/m)	eGrad(T/	m b3	b4	b5	b6	b7	b8 b9	
1	0.007	2.976	-0.338	0.115	-0.251	0.023	6.800	0.005	-0.029	-0.002
2	0.028	11.904	-1.353	0.115	-0.251	0.023	6.800	0.005	-0.029	-0.002
3	0.055	23.796	-2.707	0.087	-0.261	0.020	6.799	0.004	-0.029	-0.002
4	0.069	29.663	-3.383	0.059	-0.278	0.017	6.798	0.004	-0.029	-0.002
5	0.083	35.266	-4.060	0.054	-0.310	0.014	6.797	0.004	-0.029	-0.002
6	0.096	40.590	-4.736	0.061	-0.361	0.007	6.795	0.003	-0.029	-0.002
7	0.110	45.722	-5.411	0.031	-0.433	-0.010	6.791	0.002	-0.030	-0.002
8	0.124	50.722	-6.085	-0.011	-0.543	-0.046	6.786	-0.002	-0.031	-0.002
9	0.138	55.630	-6.756	-0.040	-0.765	-0.137	6.779	-0.009	-0.034	-0.003
10	0.151	60.477	-7.417	0.015	-1.299	-0.394	6.767	-0.026	-0.044	-0.004
11	0.165	65.282	-8.064	2.916	-2.711	-0.839	6.740	-0.022	-0.076	-0.001
12	0.179	70.046	-8.736	25.703	-7.524	-0.772	6.557	0.168	-0.177	0.021

April 19, 2021

Cross-talk control between Q1BpF with Q1eF for 4K Operation

EIC IR Meeting

-Ramesh

Next design phase

- Harmonics along the length in both quads
 - Start with 2-d simulation along the length (faster and helps in developing strategies)
 - Then perform 3-d simulation and finer optimization
- Harmonics in p-quad as a function of excitation
 - Next few slides

7

Harmonics as a function of Excitation in ion-quad (in an unoptimized design)

Design gradients

KH&VEN

NATIONAL LABORATORY

Superconducting Magnet Division

- ion-quad (pGrad): 66.2 T/m
- e-quad (eGrad): 8 T/m (?)

Harmonics become large due to uneven saturation (not surprising)

Needs to be controlled, as mentioned

3.694579395

⁼ _Q2eF-ap	or5-a-x288_3	-many-ep.BNS 🗵	🔚 q1BpF	_Q2eF-apr14-a-	x288_3-many-e	ep.BNS 🗵 📙 q	1BpF_Q2eF-a	pr14-a-x288_3	3-many-pe.BNS	X
pCASE	CUR (A)	pGrad(T/m)	eGrad(T/m bi	3 b4	b5	b6	b7	b8 b9	
1	0.007	2.976	-0.338	0.175	-0.223	-0.148	-8.178	-0.003	-0.008	0.008
2	0.028	11.904	-1.353	0.109	-0.251	-0.162	-8.184	-0.006	-0.009	0.008
3	0.055	23.796	-2.707	-0.637	-0.575	-0.285	-8.159	-0.020	-0.014	0.006
4	0.069	29.663	-3.383	-4.636	-2.357	-0.931	-7.892	-0.098	-0.043	-0.005
5	0.083	35.266	-4.060	-15.613	-7.185	-2.674	-6.446	-0.324	-0.127	-0.035
6	0.096	40.590	-4.736	-27.259	-12.116	-4.511	-4.582	-0.652	-0.248	-0.075
7	0.110	45.722	-5.411	-35.689	-15.346	-5.780	-3.192	-0.913	-0.340	-0.106
8	0.124	50.722	-6.085	-41.345	-17.298	-6.561	-2.380	-1.076	-0.390	-0.123
9	0.138	55.630	-6.756	-44.765	-18.339	-6.969	-2.006	-1.160	-0.409	-0.129
10	0.151	60.477	-7.417	-46.472	-18.698	-7.119	-1.921	-1.184	-0.409	-0.129
11	0.165	65.282	-8.064	-46.959	-18.637	-7.094	-2.015	-1.173	-0.397	-0.125
12	0.179	70.046	-8.736	-46.818	-18.347	-6.981	-2.223	-1.143	-0.380	-0.119
					\wedge					
April 1	9. 2021	Cross-talk	control bet	tween C BnF v	with C F for	4K On tion	(+6)	CIR Meeting	-Ra	mesh 8

7E-03

Non-uniform Saturation in Ion Quad (expect large saturation induced harmonics)

BROOKHAVEN

NATIONAL LABORATORY

Superconducting

Magnet Division

Modified Yoke to Force a More Uniform Saturation in Ion Quad

Important region for reducing saturation induced harmonics is yoke close to coil

April 19, 2021

-400.0

Cross-talk control between Q1BpF with Q1eF for 4K Operation

EIC IR Meeting

-Ramesh 10

BROOKHAVEN NATIONAL LABORATORY Superconducting Magnet Division Field Contour in a yoke design with a More Uniform Saturation in Ion Quad

Important region for reducing saturation induced harmonics is the yoke close to coil

April 19, 2021

Cross-talk control between Q1BpF with Q1eF for 4K Operation

EIC IR Meeting

-Ramesh

Low

Field Distribution at the Low Field and at the Design (High) Field

Note: The field distribution around ion quad may look very different but if mu is high, it woudn't matter

Harmonics as a Function of Excitation LABORATORY in a Magnetically "Symmetrized" Yoke

(-3)

Electron quad

NKHRVEN

conductina

Division

3-d)

Note: Change in harmonics small in both ion quad and

(starting design; final optimization in

electron quad

April 19,

🚽 q1Bp	F_Q2eF-ap	or14-a-x288_	3-save-ep.BNS	🔀 🔚 q1BpF_(Q2eF-apr14-a-x	288_3-save-p	be.BNS 🗵				
1	eCASE	CUR (A)	pGrad(T/m) eGrad(T/	/m b3	b4	b5	b6	b7	b8 b9	
2	1	0.007	2.976	-0.378	0.329	-0.242	0.013	7.606	0.003	-0.014	-0.006
3	2	0.028	11.903	-1.511	0.329	-0.242	0.013	7.606	0.003	-0.014	-0.006
4	3	0.055	23.790	-3.022	0.276	-0.261	0.007	7.604	0.002	-0.014	-0.006
5	4	0.069	29.642	-3.777	0.265	-0.298	0.005	7.604	0.002	-0.014	-0.006
6	5	0.083	35.218	-4.532	0.249	-0.360	0.000	7.602	0.001	-0.014	-0.006
7	6	0.096	40.533	-5.286	0.217	-0.465	-0.018	7.599	-0.002	-0.015	-0.006
8	7	0.110	45.673	-6.039	0.183	-0.623	-0.056	7.595	-0.008	-0.016	-0.006
9	8	0.124	50.681	-6.790	0.194	-0.872	-0.137	7.594	-0.018	-0.019	-0.006
10	9	0.138	55.597	-7.536	0.232	-1.302	-0.320	7.595	-0.038	-0.028	-0.006
11	10	0.151	60.455	-8.271	0.356	-1.981	-0.684	7.607	-0.065	-0.045	-0.006
12	11	0.165	65.272	-8.998	0.573	-2.748	-1.199	7.613	-0.084	-0.071	-0.006
13	12	0.179	70.055	-9.727	4.695	-4.096	-1.611	7.574	-0.040	-0.119	0.000

Ion quad (design 66.2 T/m)

🔚 q1BpF_Q2eF-apr14-a-x288_3-save-pe.BNS 🔀

1	pCASE	CUR (A)	pGrad(T/m)	eGrad(r/m b3	b4	b5	b6	b7	b8 b9	
2	1	0.007	2.976	-0.378	0.207	-0.200	-0.141	-8.188	-0.002	-0.008	0.008
3	2	0.028	11.903	-1.511	0.141	-0.209	-0.154	-8.210	-0.004	-0.008	0.008
4	3	0.055	23.790	-3.022	0.265	-0.159	-0.114	-8.399	0.003	-0.006	0.009
5	4	0.069	29.642	-3.777	0.553	-0.295	0.004	-9.077	0.032	-0.005	0.010
6	5	0.083	35.218	-4.532	0.259	-1.293	0.071	-9.807	0.099	-0.015	0.010
7	6	0.096	40.533	-5.286	0.422	-2.397	0.182	-10.403	0.169	-0.025	0.005
8	7	0.110	45.673	-6.039	1.181	-3.067	0.309	-10.792	0.216	-0.028	0.000
9	8	0.124	50.681	-6.790	1.899	-3.388	0.408	-11.097	0.246	-0.026	-0.002
10	9	0.138	55.597	-7.536	2.516	-3.470	0.487	-11.319	0.262	-0.021	-0.003
11	10	0.151	60.455	-8.271	3.169	-3.377	0.547	-11.461	0.275	-0.016	-0.003
12	11	0.165	65.272	-8.998	3.793	-3.177	0.597	-11.541	0.284	-0.009	-0.002
13	12	0.179	70.055	-9.727	4.349	-2.920	0.640	-11.578	0.290	-0.002	-0.002

Recap – Yoke Optimization for ion-quad @"near end"

b3	b4	b5	b6	b7	b8
0.175	-0.223	-0.148	-8.178	-0.003	-0.008
0.109	-0.251	-0.162	-8.184	-0.006	-0.009
-0.637	-0.575	-0.285	-8.159	-0.020	-0.014
-4.636	-2.357	-0.931	-7.892	-0.098	-0.043
-15.613	-7.185	-2.674	-6.446	-0.324	-0.127
-27.259	-12.116	-4.511	-4.582	-0.652	-0.248
-35.689	-15.346	-5.780	-3.192	-0.913	-0.340
-41.345	-17.298	-6.561	-2.380	-1.076	-0.390
-44.765	-18.339	-6.969	-2.006	-1.160	-0.409
-46.472	-18.698	-7.119	-1.921	-1.184	-0.409
-46.959	-18.637	-7.094	-2.015	-1.173	-0.397
-46.818	-18.347	-6.981	-2.223	-1.143	-0.380

Note: A big difference in change in harmonics

a clesion	b3
	0.207
	0.141 0.265
	0.553 0.259
	0.422
	1.899
	2.516
	3.793
	4.349
8692E-03 3.450502193 6.89741747	

b3	b4	b5	b6	b7	b8
0.207	-0.200	-0.141	-8.188	-0.002	-0.008
0.141	-0.209	-0.154	-8.210	-0.004	-0.008
0.265	-0.159	-0.114	-8.399	0.003	-0.006
0.553	-0.295	0.004	-9.077	0.032	-0.005
0.259	-1.293	0.071	-9.807	0.099	-0.015
0.422	-2.397	0.182	-10.403	0.169	-0.025
1.181	-3.067	0.309	-10.792	0.216	-0.028
1.899	-3.388	0.408	-11.097	0.246	-0.026
2.516	-3.470	0.487	-11.319	0.262	-0.021
3.169	-3.377	0.547	-11.461	0.275	-0.016
3.793	-3.177	0.597	-11.541	0.284	-0.009
4.349	-2.920	0.640	-11.578	0.290	-0.002

April 19, 2021

Cross-talk control between Q1BpF with Q1eF for 4K Operation

EIC IR Meeting

-Ramesh

14

April 19, 2021 Cross-talk control between Q1BpF with Q1eF for 4K Operation **EIC IR Meeting**

15

-Ramesh

BRO NATION Super Detween e-quad and ion quad (no corrector)

Field in iron ring around the electron quad is already low (should provide enough shielding)

@~design

BRI NATION Super Magnetic Super Su

e-quad: very little change despite no correction

q1Bp	F_Q2eF-ap	or14-a-x312_	_5-s1-ep.BNS 🔀	🔚 q1BpF_Q	2eF-apr14-a-x3	312_5-s1-pe.BN	S 🗙				
1	eCASE	CUR (A)	pGrad(T/m) eGrad(1	ľ/m b3	b4	b5	b6	b7	b8	b9
2	1	0.069	29.650	-3.770	-0.050	-0.179	0.012	7.577	-0.012	-0.037	0.013
3	2	0.007	2.976	-0.377	-0.055	-0.178	0.012	7.577	-0.012	-0.037	0.013
4	3	0.028	11.903	-1.508	-0.055	-0.178	0.012	7.577	-0.012	-0.037	0.013
5	4	0.055	23.793	-3.016	-0.054	-0.178	0.012	7.577	-0.012	-0.037	0.013
6	5	0.083	35.233	-4.524	-0.037	-0.183	0.013	7.577	-0.012	-0.037	0.013
7	6	0.096	40.546	-5.278	-0.014	-0.189	0.015	7.576	-0.012	-0.037	0.013
8	7	0.110	45.683	-6.032	0.022	-0.196	0.018	7.575	-0.012	-0.037	0.013
9	8	0.124	50.683	-6.786	0.073	-0.206	0.023	7.572	-0.012	-0.037	0.013
10	9	0.138	55.583	-7.541	0.179	-0.230	0.035	7.568	-0.010	-0.037	0.013
11	10	0.151	60.416	-8.296	0.444	-0.292	0.069	7.554	-0.006	-0.038	0.013
12	11	0.165	65.202	-9.052	1.155	-0.417	0.167	7.509	0.006	-0.042	0.015
13	12	0.179	69.949	-9.815	3.892	-0.617	0.553	7.289	0.055	-0.050	0.021

ion-quad: very little change

q1BpF_Q2eF-apr14-a-x312_5-s1-ep.BNS 🔀 🔚 q1BpF_Q2eF-apr14-a-x312_5-s1-pe.BNS 🗙

1	pCASE	CUR (A)	pGrad(T/m)	eGrad(T/	′m b3	b4	b5	b6	b7	b8	b9
2	1	0.069	29.650	-3.770	0.986	-0.120	0.084	-9.046	0.042	-0.003	0.012
3	2	0.007	2.976	-0.377	0.228	-0.197	-0.139	-8.187	-0.002	-0.008	0.008
4	3	0.028	11.903	-1.508	0.185	-0.203	-0.148	-8.208	-0.003	-0.008	0.008
5	4	0.055	23.793	-3.016	0.406	-0.112	-0.089	-8.389	0.006	-0.005	0.009
6	5	0.083	35.233	-4.524	0.944	-1.016	0.190	-9.760	0.113	-0.011	0.012
7	6	0.096	40.546	-5.278	0.826	-2.273	0.242	-10.375	0.179	-0.023	0.006
8	7	0.110	45.683	-6.032	1.258	-3.120	0.298	-10.789	0.215	-0.029	0.000
9	8	0.124	50.683	-6.786	1.554	-3.639	0.317	-11.127	0.232	-0.032	-0.005
10	9	0.138	55.583	-7.541	1.624	-3.943	0.307	-11.387	0.234	-0.033	-0.007
11	10	0.151	60.416	-8.296	1.647	-4.085	0.273	-11.569	0.233	-0.032	-0.009
12	11	0.165	65.202	-9.052	1.607	-4.120	0.232	-11.689	0.228	-0.030	-0.010
13	12	0.179	69.949	-9.815	1.512	-4.086	0.190	-11.762	0.221	-0.028	-0.011
Ар	ril 19, 202	21	Cross-talk con	ntrol between	Q1BpF with	h Q1eF for	4K Operation]	EIC IR Meetin	g	-Ramesh

BROOKHAVEN NATIONAL LABORATOR Superconducting Magnet Division

- Since there is a little change in e-quad harmonics without corrector, no corrector is needed
- But how about if we energize the full-strength corrector? That will examine the sensitivity. Low harmonics in both cases means low sensitivity
- Remember that this is a different type of corrector. They are not used to correct the field errors. They are used to control the iron saturation. If "mu" remains somewhat high, it would provide shielding irrespective of anything.

April 19, 2021

Far Side with the Maximum Separation BRO NATION between e-quad and ion quad (full corrector) Super Magne

Full-strength correctors (Note: low field in yoke around e-quad)

LIC IN MICCHIN

annesn

1.15208E-05

0.0

BRO NATION Super **Detween e-quad and ion quad (full corrector)**

e-quad: very little change despite full-strength corrector

q1Bp	F_Q2eF-ap	or14-a-x312_	5-n1-ep.BNS 🔀	🔚 q1BpF_C)2eF-apr14-a-x3	12_5-n1-pe.BN	s 🗵				
1	eCASE	CUR (A)	pGrad(T/m) eGrad(r/m b3	b4	b5	b6	b7	b8	b9
2	1	0.069	29.647	-3.768	-0.113	-0.208	0.006	7.576	-0.013	-0.037	0.013
3	2	0.007	2.976	-0.377	-0.090	-0.196	0.009	7.577	-0.013	-0.037	0.013
4	3	0.028	11.903	-1.507	-0.090	-0.196	0.009	7.577	-0.013	-0.037	0.013
5	4	0.055	23.792	-3.014	-0.092	-0.198	0.008	7.577	-0.013	-0.037	0.013
6	5	0.083	35.225	-4.521	-0.130	-0.220	0.004	7.575	-0.013	-0.037	0.013
7	6	0.096	40.533	-5.274	-0.148	-0.237	0.000	7.574	-0.013	-0.037	0.013
8	7	0.110	45.664	-6.027	-0.172	-0.257	-0.008	7.572	-0.014	-0.037	0.013
9	8	0.124	50.656	-6.780	-0.216	-0.288	-0.022	7.569	-0.015	-0.038	0.012
10	9	0.138	55.546	-7.532	-0.288	-0.332	-0.043	7.563	-0.017	-0.038	0.012
11	10	0.151	60.369	-8.283	-0.386	-0.391	-0.079	7.554	-0.019	-0.040	0.012
12	11	0.165	65.143	-9.032	-0.536	-0.481	-0.154	7.538	-0.023	-0.043	0.011
13	12	0.179	69.880	-9.774	-0.815	-0.652	-0.343	7.499	-0.029	-0.050	0.008

ion-quad: very little change

Means: works well whether correctors are present or not

20

гчтор	_azer ap		этперьоно 🖬			12_0 III pc.bit						
1	pCASE	CUR (A)	pGrad(T/m) eGrad(T	/m b3	b4	b5	b6	b7	b8	b9	
2	1	0.069	29.647	-3.768	0.818	-0.187	0.053	-9.058	0.038	-0.004	0.011	
3	2	0.007	2.976	-0.377	0.219	-0.199	-0.140	-8.187	-0.002	-0.008	0.008	
4	3	0.028	11.903	-1.507	0.167	-0.205	-0.150	-8.209	-0.004	-0.008	0.008	
5	4	0.055	23.792	-3.014	0.355	-0.128	-0.097	-8.393	0.005	-0.006	0.009	
6	5	0.083	35.225	-4.521	0.524	-1.192	0.117	-9.788	0.105	-0.013	0.011	
7	6	0.096	40.533	-5.274	0.299	-2.485	0.153	-10.411	0.166	-0.027	0.005	
8	7	0.110	45.664	-6.027	0.620	-3.359	0.197	-10.833	0.200	-0.035	-0.002	
9	8	0.124	50.656	-6.780	0.773	-3.911	0.203	-11.178	0.214	-0.038	-0.007	
10	9	0.138	55.546	-7.532	0.697	-4.247	0.182	-11.444	0.214	-0.040	-0.010	
11	10	0.151	60.369	-8.283	0.586	-4.418	0.138	-11.631	0.211	-0.039	-0.012	
12	11	0.165	65.143	-9.032	0.427	-4.478	0.089	-11.754	0.205	-0.037	-0.013	mesh

Recap – There is sufficient shielding irrespective of the strength of corrector

NO in c	cur orre	rei ect	nt or					0)~	de		iç	jn	
			>	at					D					
0.0	220.0	240.0	260.0	280.0	300.0	320.0	340.0	360.0	380.0	400.0	420.0	440.0	460.0	48
Component: B 0.0	220.0	2-10.0	2.00.0	2.00.0	550.0	0.85	540.0	500.0	550.0	+00.0	120.0	7	10.0	1.7

NKH*i*ven

NATIONAL LABORATORY

Superconducting Magnet Division

/m D3	D4	ca	øа	/ a	80
-0.050	-0.179	0.012	7.577	-0.012	-0.037
-0.055	-0.178	0.012	7.577	-0.012	-0.037
-0.055	-0.178	0.012	7.577	-0.012	-0.037
-0.054	-0.178	0.012	7.577	-0.012	-0.037
-0.037	-0.183	0.013	7.577	-0.012	-0.037
-0.014	-0.189	0.015	7.576	-0.012	-0.037
0.022	-0.196	0.018	7.575	-0.012	-0.037
0.073	-0.206	0.023	7.572	-0.012	-0.037
0.179	-0.230	0.035	7.568	-0.010	-0.037
0.444	-0.292	0.069	7.554	-0.006	-0.038
1.155	-0.417	0.167	7.509	0.006	-0.042
3.892	-0.617	0.553	7.289	0.055	-0.050

Note: A big difference in the appearance of iron magnetization but remains below 1.7 T, providing sufficient shielding

(m h 2	h 4	h C	hC	h7	h 0
m D3	D4	ca	00	1d	80
-0.113	-0.208	0.006	7.576	-0.013	-0.037
-0.090	-0.196	0.009	7.577	-0.013	-0.037
-0.090	-0.196	0.009	7.577	-0.013	-0.037
-0.092	-0.198	0.008	7.577	-0.013	-0.037
-0.130	-0.220	0.004	7.575	-0.013	-0.037
-0.148	-0.237	0.000	7.574	-0.013	-0.037
-0.172	-0.257	-0.008	7.572	-0.014	-0.037
-0.216	-0.288	-0.022	7.569	-0.015	-0.038
-0.288	-0.332	-0.043	7.563	-0.017	-0.038
-0.386	-0.391	-0.079	7.554	-0.019	-0.040
-0.536	-0.481	-0.154	7.538	-0.023	-0.043
-0.815	-0.652	-0.343	7.499	-0.029	-0.050

April 10, 2021

CLOSS-IAIK CONTON DELIVERING ALDER WILL VIEL TOR 4K Operation

EIC IR Meeting

-Ramesh

21

BROOKHAVEN NATIONAL LABORATORY Superconducting Magnet Division

Field in iron ring around the electron quad is low (should provide enough shielding)

amesh

@~design

Superconducting

Note: Change in harmonics small in both quads

April 1

e-quad and ion quad halfway through the magnet (corrector strength 70%)

Magnet Division____

Electron quad

1	eCASE	CUR (A)	pGrad(T/r	n) eGrad(7	[/m b3	b4	b5	b6	b7	b8	b9
2	1	0.069	29.646	-3.768	-0.056	-0.206	0.010	7.577	-0.013	-0.037	0.013
3	2	0.007	2.976	-0.377	-0.052	-0.199	0.011	7.577	-0.013	-0.037	0.013
4	3	0.028	11.903	-1.507	-0.052	-0.199	0.011	7.577	-0.013	-0.037	0.013
5	4	0.055	23.792	-3.014	-0.051	-0.200	0.011	7.577	-0.013	-0.037	0.013
6	5	0.083	35.225	-4.521	-0.057	-0.219	0.009	7.576	-0.013	-0.037	0.013
7	6	0.096	40.536	-5.275	-0.050	-0.233	0.008	7.575	-0.013	-0.037	0.013
8	7	0.110	45.673	-6.028	-0.040	-0.246	0.005	7.574	-0.013	-0.037	0.013
9	8	0.124	50.673	-6.782	-0.027	-0.261	-0.001	7.573	-0.013	-0.037	0.013
10	9	0.138	55.576	-7.535	-0.005	-0.280	-0.007	7.571	-0.013	-0.037	0.013
11	10	0.151	60.416	-8.289	0.044	-0.305	-0.015	7.567	-0.013	-0.038	0.013
12	11	0.165	65.209	-9.042	0.263	-0.354	-0.015	7.557	-0.010	-0.039	0.013
13	12	0.179	69.968	-9.799	1.893	-0.583	0.057	7.506	0.019	-0.048	0.015

Ion quad (design 66.2 T/m)

1BpF_Q2eF-apr14-a-x300-s2-ep.BNS 🔟 📙 q1BpF_Q2eF-apr14-a-x300-s2-pe.BNS 🔀 📗

	1	pCASE	CUR (A)	pGrad(T/m)	eGrad(I	ľ/m b3	b4	b5	b6	b7	b8	b9
	2	1	0.069	29.646	-3.768	0.772	-0.209	0.044	-9.061	0.037	-0.004	0.011
	3	2	0.007	2.976	-0.377	0.220	-0.199	-0.140	-8.187	-0.002	-0.008	0.008
	4	3	0.028	11.903	-1.507	0.167	-0.205	-0.150	-8.209	-0.004	-0.008	0.008
	5	4	0.055	23.792	-3.014	0.342	-0.134	-0.100	-8.394	0.005	-0.006	0.009
	6	5	0.083	35.225	-4.521	0.511	-1.200	0.113	-9.789	0.104	-0.014	0.011
	7	6	0.096	40.536	-5.275	0.436	-2.430	0.174	-10.403	0.169	-0.026	0.005
	8	7	0.110	45.673	-6.028	0.941	-3.234	0.248	-10.812	0.207	-0.032	-0.001
	9	8	0.124	50.673	-6.782	1.337	-3.701	0.287	-11.143	0.227	-0.034	-0.005
	0	9	0.138	55.576	-7.535	1.553	-3.941	0.302	-11.392	0.233	-0.033	-0.008
	1	10	0.151	60.416	-8.289	1.763	-4.009	0.297	-11.562	0.236	-0.031	-0.009
	2	11	0.165	65.209	-9.042	1.937	-3.966	0.287	-11.669	0.236	-0.027	-0.009
9, 20	3	12	0.179	69.968	-9.799	2.075	-3.850	0.275	-11.729	0.233	-0.023	-0.009

e-quad and ion quad halfway through the magnet with thicker iron ring around e-quad (No corrector)

-Ramesh

24

EIC IR Meeting

Field in iron ring around the electron quad is ~2T. We may **NOT** have enough shielding, but shouldn't be terrible either

Cross-talk control between Q1BpF with Q1eF for 4K Operation

e-quad and ion quad halfway through the magnet with thicker iron ring around e-quad (No corrector)

Electron quad

g1BpF	Q2eF-ap	r14-a-x300-i	n1-ep.BNS 🗵 📙	q1BpF_Q2eF	-apr14-a-x300-n	1-pe.BNS 🗵	q1BpF_Q2eF	⁻ -harm-apr14-	a-x300-n1-00	.comi 🗵 🔚 q1Bp	F_Q2eF-apr1
1	eCASE	CUR (A)	pGrad(T/m)	eGrad(T	/m b3	b4	b5	b6	b7	b8 b9	
2	1	0.069	29.651	-3.770	-0.049	-0.178	0.012	7.577	-0.012	-0.037	0.013
3	2	0.007	2.976	-0.377	-0.056	-0.177	0.011	7.577	-0.012	-0.037	0.013
4	3	0.028	11.903	-1.508	-0.057	-0.176	0.011	7.577	-0.012	-0.037	0.013
5	4	0.055	23.793	-3.016	-0.056	-0.176	0.011	7.577	-0.012	-0.037	0.013
6	5	0.083	35.238	-4.524	-0.030	-0.183	0.013	7.577	-0.012	-0.037	0.013
7	6	0.096	40.558	-5.278	0.005	-0.194	0.017	7.576	-0.012	-0.037	0.013
8	7	0.110	45.705	-6.032	0.058	-0.207	0.021	7.574	-0.012	-0.037	0.013
9	8	0.124	50.721	-6.787	0.148	-0.228	0.031	7.571	-0.011	-0.037	0.013
10	9	0.138	55.643	-7.542	0.368	-0.287	0.057	7.561	-0.008	-0.038	0.013
11	10	0.151	60.503	-8.298	0.911	-0.427	0.132	7.532	0.002	-0.041	0.014
12	11	0.165	65.319	-9.058	2.675	-0.683	0.394	7.404	0.034	-0.050	0.019
13	12	0.179	70.098	-9.832	9.213	-1.041	1.278	6.885	0.147	-0.068	0.033

Ion quad (design 66.2 T/m)

q1Bp	F_Q2eF-ap	or14-a-x300-	n1-pe.BNS 🗵 📙	q1BpF_Q2eF	-apr14-a-x300-	n1-00-ep.BNS	🔄 🔚 q1BpF	_Q2eF-apr14-a	-x300-n1-00-p	e.BNS 🔀	
1	pCASE	CUR (A)	pGrad(T/m)	eGrad(T	/m b3	b4	b5	b6	b7	b8 b9	
2	1	0.069	29.651	-3.770	1.018	-0.106	0.090	-9.044	0.042	-0.002	0.012
3	2	0.007	2.976	-0.377	0.228	-0.197	-0.139	-8.187	-0.002	-0.008	0.008
4	3	0.028	11.903	-1.508	0.186	-0.202	-0.148	-8.208	-0.003	-0.008	0.008
5	4	0.055	23.793	-3.016	0.409	-0.111	-0.088	-8.389	0.006	-0.005	0.009
6	5	0.083	35.238	-4.524	1.191	-0.907	0.235	-9.743	0.118	-0.009	0.012
7	6	0.096	40.558	-5.278	1.360	-2.044	0.337	-10.337	0.192	-0.018	0.008
8	7	0.110	45.705	-6.032	2.114	-2.768	0.445	-10.727	0.238	-0.021	0.003
9	8	0.124	50.721	-6.787	2.820	-3.144	0.520	-11.039	0.265	-0.021	0.000
.0	9	0.138	55.643	-7.542	3.369	-3.287	0.573	-11.271	0.278	-0.018	-0.002
.1	10	0.151	60.503	-8.298	3.905	-3.260	0.604	-11.425	0.286	-0.014	-0.002
.2	11	0.165	65.319	-9.058	4.373	-3.133	0.623	-11.518	0.290	-0.009	-0.002
.3	12	0.179	70.098	-9.832	4.730	-2.956	0.632	-11.570	0.290	-0.004	-0.002
021	Cr	oss-talk c	o <mark>ntrol between</mark>	Q1BpF wit	h Q1eF for	4K Operation	L	EIC IR Me	eeting	-Rames	sh 25

Summary

- A novel technique is being developed to reduced cross-talk between two quads in a single yoke, placed in tight space. Iron saturation is controlled with proper cutouts and small coils.
- It is based on controlling the yoke saturation (experience from RHIC magnets - now standard around the world), where we reduced saturation from 40+ unit of sextupole to just a few units.
- Even though the solutions are not yet fully optimized, the harmonics remain small both in electron quad and proton quad at different level of excitation and at different axial locations (based on 2-d) analysis.
- > The corrector strength doesn't have to be controlled too well.
- Next step: verification with the 3-d modelling but all signs are promising.

April 19, 2021Cross-talk control between Q1BpF with Q1eF for 4K OperationEI

Superconducting

Harmonic Analysis

/ THIS SECTION :	IS TO DEFINE	CONSTANT FOR HARMO
/		
\$CONS #RINT		80.0
\$CONS #R0		60.0
\$CONS #eRINT		50.
\$CONS #eR0		30.
/\$CONS #eX0		288.3
\$CONS #X0		0.
\$CONS #Y0		0.

/ file for computing harmonics in prot	ion and	electron	quads	of	EIC		
/Enter filename (without .ST)							
/							
\$ STRING filename 'q1BpF_Q2eF-apr14-a-x300-n1-00' /							
/Center of electron							
/							
\$CONS #eX0	300.0						
/							
/ NUMBER OF CASES							
/							
\$CONS #CASA	12						
/							
\$ COMI q1BpF_Q2ef-ep.comi CONT							
/							
\$ COMI q1BpF Q2ef-pe.comi CONT							

IR