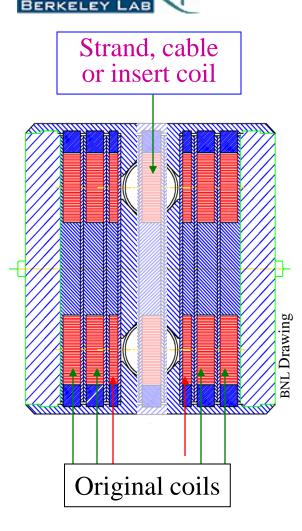


## **Common Coil Magnet**

As a Facility for Conductor and Magnet Development

Ramesh Gupta, LBNL

### High Field Materials Low Temperature Superconductor Workshop Santa Rosa, California November 1-3, 1999


Ramesh Gupta

Common Coil Magnet As a Facility for Conductor and Magnet Development

Superconducting Magnet Program

Slide No. 1/9

## Common Coil Magnet As A Test Facility



m

**cccc** 

- A Modular Design with a significant flexibility.
  - Coil geometry is vertical and flat. That means a new coil module having even a different cable width can be accommodated by changing only few parts in the internal support structure.
  - The central field can be increased by reducing the separation between the coils.
  - The geometry is suitable for testing strands, cables, mini-coils and insert coils.
  - Since the insert coil module has a relatively small price tag, this approach allows both *"systematic"* and *"high risk"* R&D in a time and cost-effective way. This might change the way we do magnet R&D.
  - Can use the successful results in the next magnet.

Common Coil Magnet As a Facility for Conductor and Magnet Development

Superconducting Magnet Program

Ramesh Gupta



## A Few Possible Topics for Cable and Magnet Designs

Strand, cable or insert coil

Original coils

### **Examples of systematic and non-conventional design studies:**

- Variation in cable/conductor configuration
  - Mixing Cu strand with Nb<sub>3</sub>Sn superconductor
  - Heat treatment studies
- Different technologies
  - "Wind & React" Vs. "React & Wind"
- Different type of conductors
  Nb<sub>3</sub>Al, HTS, etc.
- Different type of conductor geometry

  Tape, cable
- Stress management module
- Different type of mechanical structures and variations in them
- Different cable insulation and insulating schemes

Peter McIntyre's Design

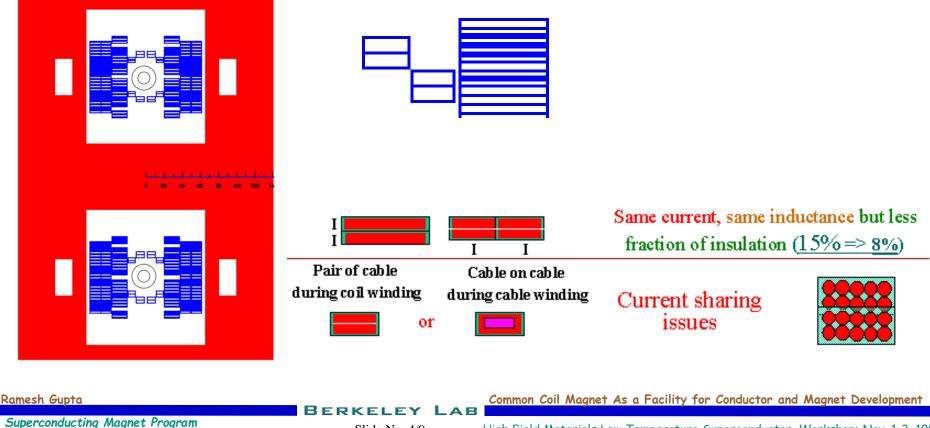
🕲 NbTi

Ramesh Gupta

Superconducting Magnet Program

Slide No. 3/9

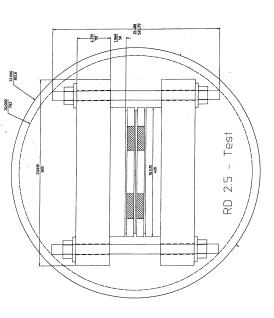
Common Coil Magnet As a Facility for Conductor and Magnet Development


NL Drawing



## A Common Coil Design Study With A Reduction in Insulation Volume

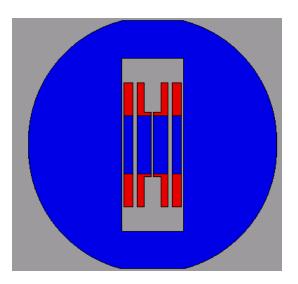
#### A Common Coil Design with all harmonics $< 10^{-5}$ (geometric).


Uses a different cable in auxiliary coils to simulate tilted blocks with two flat blocks. All conductors are in series.





## RD3 Reincarnations for A Test Facility


### **Purpose of this exercise**



• Design a Test Facility with RD3 components.

Use RD3/RT1 coil modules.

Minimize new components.



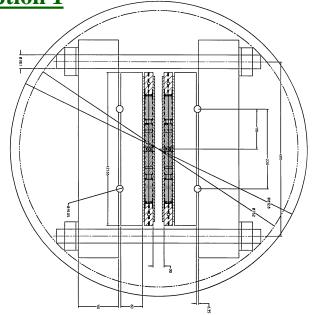
RT1 (uses RD3 outer coils) ~12 T

No Real Gap/space between coils.

**RD3 : 13.7 T -- 40 mm coil aperture; but** really too small a space (after internal structure) for using it as a Test Facility.

Common Coil Magnet As a Facility for Conductor and Magnet Development

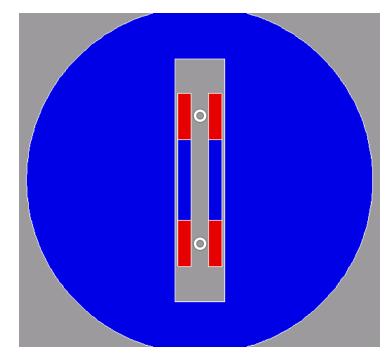
Superconducting Magnet Program


Ramesh Gupta

Slide No. 5/9



## Test Facility with Outer Coils Only


**Option 1** 



# Modified RT1 for facility with 30 mm coil spacing.

**Bss ~11.5 T** 

**Option 2** 

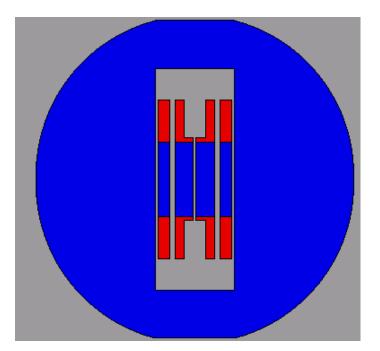


Outer Coils in RD3-type structure with iron yoke -- 30 mm coil spacing Bss ~12.1 T

Ramesh Gupta

Superconducting Magnet Program

BERKELEY L


Common Coil Magnet As a Facility for Conductor and Magnet Development

Slide No. 6/9



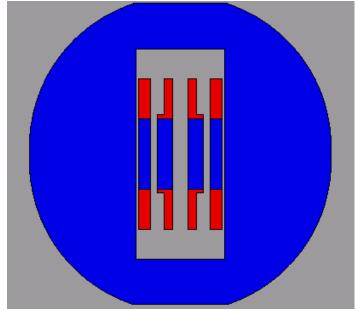
## Test Facility with All Coils

#### **Original RD3 design**



40 mm aperture but really too small a space for a Test Facility.

**Bss ~13.7 T** 


Ramesh Gupta

Superconducting Magnet Program

BERKELEY L

Slide No. 7/9

**RD3 with inner coils flipped** (Bill Barletta's suggestion)



The above geometry puts the structure blocking the test space on the other side. Bss ~13.7 T for 30 mm separation

Bss ~ 13.2 T for 40 mm separation

\* The above trick worked because of a peculiar situation that the outer coil had  $\sim 15\%$  margin over the inner coil.

Common Coil Magnet As a Facility for Conductor and Magnet Development



# Summary of Test Configurations

| REFERENCE DESIGN STUDIES :                           |            |                      |             |        |  |  |
|------------------------------------------------------|------------|----------------------|-------------|--------|--|--|
| (not suitable for a test facility)                   | Bss        | <b>Stored Energy</b> | Fx          | Fy     |  |  |
|                                                      | <b>(T)</b> | (J/mm)               | (N/mm)      | (N/mm) |  |  |
| RD3 original design as per spec (40 mm aperture)     | 14.3       | 1800                 | 9200        | 260    |  |  |
| RD3 (with Nb3Sn strand data for inner & outer coils) | 13.7       | <b>1640</b>          | <b>8450</b> | 240    |  |  |
| RD3 outer coils (no real gap - 9.5 mm coil sepation) | 12.6       | 240                  | 4850        | -200   |  |  |
| RT1 outer coils only - no yoke and no real gap)      | 12.1       | 240                  | 4160        | -170   |  |  |

| Possible configurations for a test facility           | Bss        | <b>Stored Energy</b> | Fx     | Fy     |
|-------------------------------------------------------|------------|----------------------|--------|--------|
|                                                       | <b>(T)</b> | (J/mm)               | (N/mm) | (N/mm) |
| RD3 outer coils only with yoke (30 mm separation)     | 12.1       | 520                  | 5170   | -210   |
| RT1 outer coils only and no Yoke (30 mm separation)   | 11.5       | 520                  | 4010   | -170   |
| RD3 outer + "inner coils flipped" (30 mm separation)  | 13.7       | 1800                 | 8390   | 621    |
| RD3 outer + "inner coils flipped" (40 mm separation)  | 13.2       | 2080                 | 8330   | 770    |
| RD3 inner coils flipped (30 mm - No yoke, structure?) | 13.3       | 1760                 | 6070   | 160    |

| A configurations for a high field coil test             | Bss        | <b>Stored Energy</b> | Fx     | Fy     |
|---------------------------------------------------------|------------|----------------------|--------|--------|
|                                                         | <b>(T)</b> | (J/mm)               | (N/mm) | (N/mm) |
| RD3 inner coils flipped; same structure (almost no gap) | 14.7       | 1120                 | 8340   | 120    |

Some of these calculations are preliminary (only 2-d calculations).

However, 3-d (end) effects, etc. are not expected to reduce the computed short sample by over 1 tesla.

FDKFI

Ramesh Gupta

Common Coil Magnet As a Facility for Conductor and Magnet Development

6

2

due

possible

<u>vnv</u>

are

combinations

প্

permutations

tests

**These kinds of** 

esign

 $\check{\mathbf{\sigma}}$ 

col

common

2

geometry

coil

vertical

Superconducting Magnet Program

Slide No. 8/9



## In Conclusion, A Personal Opinion:

The "Common Coil Geometry" provides a unique and flexible "Test Facility\*" for conductor and magnet development.

\*a.k.a.:

Magnet R&D Factory

Common Coil Magnet As a Facility for Conductor and Magnet Development

Ramesh Gupta

Superconducting Magnet Program

Slide No. 9/9