

Investigation of Q2pF Ends for Favorable Tilt Angles

Ramesh Gupta May 30, 2023

Design Goals : More Vertical Q2pF Ends

- Make this while satisfying the following other design criteria:
 - > Peak field in the Ends remain within a few percentage of the 2-d peak field
 - Important as (a) we don't want to lose any margin, and (b) the cable in the ends is less well supported than the cable in the body of the magnet
 - > Good field quality (small integrated harmonics in the Ends, as in straight section)

Turns should be easy to wind. They should be easily kept in place with acceptable strain on the conductor. Take feedback and useful experience from the single turn test in B1pF. Follow a similar procedure. End turn layout should look reasonable from ROXIE and CAD models before printing 3-d parts.

- First round is done manually for developing a better understating. Detailed optimization to follow.
- One representative case each for 65 degrees tilt (25 degrees from vertical plane) and for 70 degrees tilt (20 degrees from vertical plane) will be presented today.

Initial Manually Optimized End Geometry (tilt angles 65 degrees or more, 25° from pole)

Ramesh Gupta

Magnet Division

Views on Initial End Geometry (65°)

Ramesh Gupta

Initial Investigation of Q2pF Ends with Favorable Tilt Angles

May 30, 2023

First Examine the Peak Field and Compare with the Body Peak Field in the Body of the Magnet

Peak Field in the Ends (65°)

- Peak field in the ends (including self field): 7.07 T; 2-d (Body) was 7.05 T
 - ✓ Peak field in the Ends is close to the field in cross-section

MARGIN CALC (USING JC-F BLOCK NUMBER PEAK FIELD IN CONDUCTOR CURRENT IN CONDUCTOR 7 SUPERCONDUCTOR CURRENT PERCENTAGE ON THE LOAD QUENCHFIELD (T) TEMPERATURE MARGIN TO (PERCENTAGE OF SHORT SAM	IT): 70 (T) 70 (A) DENSITY (A/MM LINE UENCH (K) PLE CURRENT .	2)	11 7.0716 -8500.0000 -886.0233 66.9817 10.5575 3.0748 27.5139	All other blocks have lower peak fields
[/home/gupta/EIC/Q2pF/2023/May2023/Q2pF3D	-may2023-d4bm1.data]			

Ramesh Gupta

Integrated Field Harmonics (65°)

HARMONIC ANALYSIS NUMBER	1
MAIN HARMONIC	2
REFERENCE RADIUS (mm)	83.0000
X-POSITION OF THE HARMONIC COIL (Mm)	0.0000
Y-POSITION OF THE HARMONIC COIL (MM)	0.0000
NUMBER OF ANALYSES ALONG Z	500
LENGTH OF VIRTUAL COIL (MM)	2500.0000
REFERENCE POSITION NUMBER	10
MEASUREMENT TYPE ALL FIELD CO	NTRIBUTIONS
ERROR OF HARMONIC ANALYSIS OF Br	0.6698E-04
SUM (Br(p) - SUM (An cos(np) + Bn sin(np))	

3D REFERENCE MAIN FIELD (T)	3.4693
REFERENCE MAGNET STRENGTH (T/(m^(n-1))	41.7992
MAGNETIC LENGTH (mm)	1723.3571

N	ORMAL	3D	INTEGRAL	R	ELAT	IVE MULTIPOLE	S	(1.D-4):	
b	1:		0.00000	b	2:	10000.00000	b	3:	0.00000
b	4:		0.00000	b	5:	-0.00000	b	6:	0.14827

b 7:	-0.00000	b 8:	-0.00000	b 9:	0.00000
b10:	-0.21782	b11:	0.00000	b12:	0.00000
b13:	-0.00000	b14:	-0.52195	b15:	-0.00000
b16:	-0.00000	b17:	0.00000	b18:	0.01163
b19:	-0.00000	b20:	-0.00000	b	

A reasonably good solution for manual optimization

Ramesh Gupta

Mechanical Properties of the First turn of the Initial End Geometry for 65+ Degrees Tilt Angles

Tilt Angle of 70 degrees from midplane (20 degree from pole)

Ramesh Gupta

Initial Manually Optimized End Geometry (tilt angles 70 degrees or more, 20° from pole)

Ramesh Gupta

Views on Initial End Geometry (70°)

Ramesh Gupta

Peak Field in the Body of the Magnet

Q2pF15mm cable2K,3-d test 1

22/06/06 09:57

Ramesh Gupta

Peak Field in the Ends (70°)

- Peak field in the body (including self field) : 7.05 T
- Peak field in the ends (including self field): 7.07 T

✓ Peak field in the Ends is close to the field in cross-section

RESULTS OF THE 3D PEAK FIELD CALCULATION BLOCK NUMBER	All other
BABSOLUTE IN TESLA7.0729BTRANSVERSAL TO CURRENT DIRECTION (T)7.0729BIN DIRECTION OF CURRENT (T)-0.0238BPARALLEL TO BROAD SIDE OF CABLE (T)7.0280	blocks have lower peak fields
B PERPENDICULAR TO BROAD SIDE OF CABLE (T)	

Integrated **Field** Harmonics (70°)

HARMONIC ANALYSIS NUMBER	1
MAIN HARMONIC	2
REFERENCE RADIUS (mm)	83.0000
X-POSITION OF THE HARMONIC COIL (Mm)	0.0000
Y-POSITION OF THE HARMONIC COIL (MM)	0.0000
NUMBER OF ANALYSES ALONG Z	500
LENGTH OF VIRTUAL COIL (MM)	2500.0000
REFERENCE POSITION NUMBER	10
MEASUREMENT TYPE ALL FIELD CO	NTRIBUTIONS
ERROR OF HARMONIC ANALYSIS OF Br	0.6683E-04
SUM (Br(p) - SUM (An cos(np) + Bn sin(np))	

3D REFERENCE MAIN FIELD (T)	3.4693
REFERENCE MAGNET STRENGTH (T/(m^(n-1))	41.7992
MAGNETIC LENGTH (mm)	1721.1688

NORMAL 3D INTEGRAL RELATIVE MULTIPOLES (1.D-4):

b 1:	0.00000	b 2:	10000.00000	b 3:	0.00000
b 4:	0.00000	b 5:	0.00000	b 6:	-0.01952
b 7:	-0.00000	b 8:	-0.00000	b 9:	-0.00000
b10:	-0.22372	b11:	0.00000	b12:	0.00000
b13:	-0.00000	b14:	-0.52159	b15:	-0.00000
b16:	-0.00000	b17:	0.00000	b18:	0.01163
b19:	-0.00000	b20:	-0.00000	b	

(Fundamental) 02pF3D-mav2023-c4c.output 90% L11100 Ramesh Gupta

Initial Investigation of Q2pF Ends with Favorable Tilt Angles

Reasonably

good

(even

better)

solution for

manual

optimization

Mechanical Properties of the Initial End Geometry for 70+ Degrees Tilt Angles

Comparison between 65 degrees & 70 Degrees Tilt Angles

Mechanical Properties of the First turn of the Initial End Geometry for 65+ Degrees Tilt Angles

Both Ends have low peak fields and a good field quality

Ramesh Gupta

Initial Investigation of Q2pF Ends with Favorable Tilt Angles

Mechanical Properties of the Initial End Geometry for 70+ Degrees Tilt Angles

May 30, 2023

19

About the right size tube available 🔞 Ramesh Gupta – Magi 🗴 📑 Mail - YogoMania Hol X 🛛 M RAMESH, You've Still C X 🔒 Have It All | Hilton Gra X 🛛 Hilton Grand Vacations Hol X 🧕 💽 Cart Page | OnlineMet: X 🚱 304 Stainless Steel, 1 ii X +E 52 \rightarrow Câ https://www.onlinemetals.com/en/cart \bigtriangledown \checkmark R ABP பி \leftarrow Hello, Sign in **OnlineMetals**.com My cart Deals Account & Lists Q Material V Shape V Aluminum V Stainless V All Steel V Red Metals V Services V Knowledge Hub V Keyword. A Value of your cart over \$1000? Chat or Call us For an additional discount! remove an item(s) nom your cart 11" dia **→** r=139.7 mm Cart Total Weight : 86.1 lb. (this is close enough 11" OD x 0.25" Wall x 10.5" ID Stainless Round Tube 304 - Part #: 26744 💼 Remove Item to 140 mm for single Dimensions Outer Diameter: 11" Wall: 0.25" Inner Diameter: 10.5" turn winding test). \$1.982.90 QTY 1 Size: 36.0" \$1,982.90 ea Update Let's order this tube MARNING:Cancer and Reproductive Harm www.P65Warnings.ca.gov on credit card for Material Meets These Standard(s): ASTM-A269 Add to Project List Mill Test Reports (MTR's) is available for this item. Check this box to request Your Free MTR 🛈 quick delivery $\left| + \right|$ (\$amount within the Add Reference Numbers (Optional) + Back to top credit card limit) **O** Chat 1 items - Subtotal \$1,982.90 Add-on Services \$0.00

This is good enough to get idea from the single turn test on how turns are going to lay out to provide useful feedback.

Ramesh Gupta

Summary of Initial Look of the Manually Iterated End Design

- The results presented were developed manually for a systematic investigation to optimize a good mechanical and magnetic end design.
- > This suggest that a more vertical tilt angle should be possible.
- There is no large increase in the peak fields in the ends over the body (important part of the exercise).
- > Field harmonics look ok (within one unit) may be further optimized.
- Tube with a size close to what we need has been located for inner layer. Let's order it on credit card for quick delivery to get started.
- > Tube for the outer layer can also be ordered or made with SS sheet.
- Suggest that we do (limited) winding tests for both layers but limit the curing test to one layer only.

Cross-section (Block 2D Data) of Q2pF

						Xroxie	[/home/gup	ta/EIC/Q2pF	/202	23/N	1ay2023	3/Q2pF3D-	may	y2023-d
Eile E	dit <u>D</u> is	spla	ay R <u>u</u> n											
Commen	t: Q2	oF 15	ōmm cabl	.e@2K,3-d File	∋:Q2pF3D-may2	023-d4bm1.dat	a							
Main Op	otions													
Ξ 3	D geomet	try	(LEND)		🗏 Endspace	ers (LWEDG)		🗏 Time tran	nsier	nt (LPERS)			
Q	uench s.	imul	lation (LQUENCH)	💷 Optimiza	ation (LALGO)								
C-b-1														
Lapi	e data	patr	t : rozi	.e-eic.cadata				Browse	V1	.ew t	ile			
🗊 2D C)ptions													
)													
ф эл с	ptions													
f Bloc	:k Data	2D												
No	Туре		NCab	X	Y	a	Current	Cable name	N1	N2	Imag	Turn	Ne	
1	Cos	▼	15	140	0.5	0	-8500	EICLHCB2K 🔻	1	5	0	0	1	Δ
2	Cos	•	15	140	0.5	0	-8500	EICLHCB2K 💌	1	5	0	0	2	
3	Cos	▼	4	140	33,0446	32,8991	-8500	EICLHCB2K 💌	2	10	0	0	3	
4	Cos	Ŧ	11	156	0.5	0	-8500	EICLHCB2K 💌	1	5	0	0	4	
5	Cos	▼	10	156	0.5	0	-8500	EICLHCB2K 💌	1	5	0	0	5	
6	Cos	•	10	156	24,9744	25,2508	-8500	EICLHCB2K 🔻	1	5	0	0	6	
							0500		4	E	0	0	7	
7	Cos	•	1	156	24,9744	25,2508	-8500	EICTHORSK 🔪	1	5	V	V 1		
7	Cos Cos	▼ ▼	1	156 156	24,9744	25,2508 25,2508	-8500 -8500	EICLHCB2K	1	5	0	0	8	
8	Cos Cos Cos	 <		156 156 156	24,9744 24,9744 24,9744	25,2508 25,2508 25,2508	-8500 -8500 -8500	EICLHCB2K V EICLHCB2K V		5	0	0	, 8 9	
7 8 9 10	Cos Cos Cos Cos	 <		156 156 156 156	24.9744 24.9744 24.9744 24.9744	25,2508 25,2508 25,2508 25,2508	-8500 -8500 -8500 -8500	EICLHCB2K EICLHCB2K EICLHCB2K EICLHCB2K	1 1 1 2	5 5 10	0	0	9 10	

Ramesh Gupta

Input for beta 65 or more (magnetic)

Xroxie [/home/gupta/EIC/Q2pF/2023/May2023/Q2pF3D-may2023-d4b

ile <u>E</u> dit <u>D</u> isplay R <u>u</u> n								No	X1	Xu	Xs String	Ac	t I	N/a
Comment : 🛛 🛛 2pF15mm cable@2K,3-	d File							1	1100	1700	1652 Z0	2	- 3	3
lain Options								2	1000	1700	1530 70	2		11
= 3D geometry (LEND)	⊒ En	idspacers (LWE)	DG)	🗏 Time	transient (L	PERS)			10000	1,00	72 0220			
Quench simulation (LQUENCH)) 💷 Op	timization (L	ALGO)					3	20	50	37 DZZR	2		1
Cable data path + royie-eic c	adat a			Brou	Vieu fi	la		4	10	40	23,7173 DZZR	2	▼ 2	2
cable data path . Toxle elt.t	auaca			Brow		.16		5	10	60	37 DZZR	2	-	4
🗜 2D Options								6	10	30	14,6026 DZZR	2	• 5	5
🗊 3D Options								7	10	80	70,6626 DZZR	2	• 6	6
🗊 Block Data 2D								8	0	60	0.5 DZZR	2	• 7	7
n Block Data 3D								9	0	60	0.5 DZZR	2	• 8	3
Ne Type	ß	Во	zo	Wi	Wo	Hwed	Horder	9	0	60	50 DZZR	2	•	э
1 Diff. Geometry f 💌	65	1.1	1140	0,28	0,28	15	2,2	10	0	50	0.5 DZZR	2	•	10
2 Diff. Geometry f 💌	65	1.2	1100	0,28	0,28	15	2,2	11	0	0		- 2	T	2
3 Diff. Geometry f 💌	65	1.3	1670	0,28	0,28	15	2,3							_
4 Diff. Geometry f 💌	65	1.1	1100	0,28	0,28	15	2	12	0	0	0 ALPHR	2	– 2	2
5 Diff. Geometry f 💌	67	1.15	1150	0,28	0,28	15	2	13	0	0	0 PHIR	2	• 5	ō
6 Diff. Geometry f 💌	65	1.2	1100	0,28	0,28	15	2	14	65	65	65 BETA	2	• 2	2
7 Diff. Geometry f 💌	75	1,25	1530	0,28	0,28	15	2	15	0	0		2		5
8 Diff. Geometry f 💌	75	1,25	1530	0,28	0,28	15	2	10						
9 Diff. Geometry f 💌	75	1.25	1530	0,28	0,28	15	2	16	2	2	2 HURDER	2		2
10 Diff. Geometry f 💌	80	1.25	1530	0,28	0,28	15	2	17	0	0	0 PHIR	2	▼ 7	7-11
11 Diff. Geometry f 💌	80	1,25	1530	0,28	0,28	15	2	18	0	0	0 ALPHR	2	- 7	7-11

Xroxie [/home/gupta/EIC/Q2pF/2023/May2023/Q2pF3D-may2023-d4b.data]

Ramesh Gupta

Input for beta 70 degrees or more

Xroxie [/home/gupta/EIC/Q2pF/2023/May2023/Q2pF3D-may2023-c4cm1.

e <u>E</u> dit <u>D</u> isplay R <u>u</u> n									Design V	ariablec			
nment : Q2pF15mm cabl	Le@2K,3-d	File:Q2pF3D	-23aug2022.da	ita					Destâu A	al Tables			
n Options									Optimiza	tion algorith	m : 1 Extra	em	
📕 3D geometry (LEND)		🗏 End	spacers (LWE)	DG)	🗏 Time tra	ansient (LPERS	5)		hl-			Val Charles	10-1 N/4
Quench simulation ((LQUENCH)	💷 Opt	imization (Lf	ALGO)						A1	Xu	AS 5tring	HCt N/a
Pala la sinta santa a la sur							1			1100	1700	1651 20	2 - 3
Lable data path : roxi	Le-elc.ca	data			Browse	View file			2	1000	1700	1530 ZO	2 🔻 11
2D Options									3	20	50	37 DZZR	2 🔻 1
									4	10	40	23,7173 DZZR	2 🔻 2
3D Uptions									5	10	60	37 DZZR	2 🔻 4
Block Data 2D									6	10	30	14,6026 DZZR	2 🔻 5
Block Data 3D									7	10	80	70,6626 DZZR	2 🕶 6
Ne Type		ß	Во	zo	Wi	Wo	Hwed	Horder	8	0	60	0.5 DZZR	2 🔻 7
1 Diff. Geometry f	-	70	1.1	1140	0,28	0,28	15	2,2	9	0	60	0.5 DZZR	2 🔻 8
2 Diff. Geometry f	-	73	1,2	1100	0,28	0,28	15	2,2	9	0	60	50 DZZR	2 - 9
3 Diff. Geometry f	-	75	1.3	1670	0,28	0,28	15	2,3	10	0	50	0.5 D77P	2 - 10
4 Diff. Geometry f	•	70	1.1	1100	0,28	0,28	15	2					
5 Diff. Geometry f	•	72	1.15	1150	0,28	0,28	15	2		0	0	UPHIR	2 • 2
6 Diff. Geometry f	•	70	1,2	1100	0,28	0,28	15	2	12	0	0	0 ALPHR	2 💌 2
7 Diff. Geometry f	•	80	1,25	1530	0.28	0,28	15	2	13	0	0	0 PHIR	2 🔻 5
8 Diff. Geometry f	•	80	1,25	1530	0,28	0,28	15	2	14	70	70	70 BETA	2 🔻 2
9 Diff. Geometry f	•	80	1,25	1530	0,28	0,28	15	2	15	0	0	0 ALPHR	2 🔻 5
10 Diff. Geometry f	-	80	1,25	1530	0.28	0,28	15	2	16	2	2	2 HORDER	2 🔻 2
11 Diff. Geometry f	▼	80	1,25	1530	0,28	0,28	15	2	17	0	0	0 PHIR	2 🔻 7-1
									18	0	0	0 ALPHR	2 🔻 7-1

[/home/gupta/EIC/Q2pF/2023/May2023/Q2pF3D-may2023-c4cm1.data]

Ramesh Gupta

24

Input for mechanical plots

F Plotting 3D

z-axis Colour

3000 Colour 🔻 Yes

4000 Colour 🔻 Yes

4000 Colour 🔻 Yes

⊒ 3D

No

1

2

3

4

5

6

7

8

Graph									
No	Туре	X value	N/a	N/a	Y value	N/a	N/a	Plot number	
1	3D coil 💌	ARCLC	0	0	CGEODE	1	0	1	
2	3D coil 💌	ARCLC	0	0	BGEODE	1	0	2	
3	3D coil 💌	ARCLC	0	0	CNORMA	1	0	3	
4	3D coil 💌	ARCLC	0	0	BNORMA	1	0	4	
5	3D coil 💌	ARCLC	0	0	CTORS	1	0	5	
6	3D coil 💌	ARCLC	0	0	BTORS	1	0	6	
7	3D coil 💌	ARCLC	0	0	CGEODE	1	0	7	
8	3D coil 💌	ARCLC	0	0	BGEODE	1	0	7	
9	3D coil 💌	ARCLC	0	0	CNORMA	1	0	8	
10	3D coil 💌	ARCLC	0	0	BNORMA	1	0	8	
11	3D coil 💌	ARCLC	0	0	CTORS	1	0	9	
12	3D coil 💌	ARCLC	0	0	BTORS	1	0	9	

3D Options

■ 3D Fields & forces in coi

🗏 Additional bricks (LBRICK

More options :

No String	Value	
1 WRLWH	0	$\overline{\Lambda}$
		-

[/home/gupta/EIC/Q2pF/2023/May2023/Q2pF3D-may2023-c4cm1.data]

Brookhaven⁻ National Laboratory Magnet Division

Ramesh Gupta

Initial Investigation of Q2pF Ends with Favorable Tilt Angles

Ŧ

Ŧ

Ŧ

Ŧ

•

Group Field

O COIL SUN

O COIL SUN

O COIL SUN

O COIL SUN

O COIL B

O COIL B

O COIL B

O COIL B

min, field in cond. (LROLER2) = 3D max, field in cond. (LROLERP)

▼ 1 Isometric front ▼

▼ 1 Isometric front

▼ 2 Isometric back

2 Isometric back

4 Top elevation

4 Top elevation

▼ 3 Isometric front

▼ 3 Isometric front ▼

View

4quad