

BNL's hybrid magnet test facility, recent test experience, and incoming tests of KEK coils Ramesh Gupta US-Japan HEP Magnets Collaboration Meeting

May 17, 2023

A Unique Background-field Dipole for Magnet R&D

- $> Nb_3Sn$, common coil 2-in-1 dipole that allows two insert coils in two aperture
- Structure is designed to provide a large open space (~30 mm X 335 mm)
- New insert coils can be tested in the background field of up to 10 T (+ self-field)
- The insert coils come in direct contact with the existing Nb₃Sn coils and therefore become an integral part of the magnet (e.g., HTS/LTS hybrid dipole)
- Facilitates a rapid-turn around, low-cost R&D approach for high field magnets
 The approach has already been successfully demonstrated in several tests

Magnet Division

Two Previous HTS/LTS Hybrid Dipole Tests (Either Field Perpendicular or Field Parallel)

Configuration of US-Japan HTS/LTS Hybrid Test

Two identical HTS insert coils in two apertures of the common coil dipole:

- **Upper Bore: field primarily parallel**
- Lower bore: field primarily perpendicular

Systematic and definitive studies:

- Expect significantly lower magnetization and significantly higher current carrying capacity in field parallel case.
- This test will quantify them in high field dipole and provide useful data for designing high field accelerators

1.311979E+00

.200000F+00

1.000000E+001

8.000000E+000

6 000000F+000

4 000000F+00

1 028170F+00

Ramesh Gupta

Bipolar Power Supply to Study Hysterics Loop

Brookhaven National Laboratory **Magnet Division**

Ramesh Gupta

0.0263

Internal

Internal

Disable

0.0482

Internal

Disable

02

Trigger

port

CURRENT SOURCE

F1 MODIFY

F3 ABORT

F5 RPPLY

CURR

SOUR

F1 MODI

F3 ABOR

FS APPL

SETTI

SETTINGS

A Lingering Issue until the Recent PSI/BNL Test

Superconducting Magnet Division

Ramesh Gupta, K. Amm, P. Joshi, S. Joshi, W. Sampson, A. Ben Yahia LTSW/HFSW2020, Berkley, CA

Even though a record 12.3 T hybrid field was obtained, the performance was not limited by HTS coils. It was limited by the Nb₃Sn coils in every HTS/LTS combination.

Smaller HTS coils were in direct contact with the larger Nb₃Sn coils with no structure in between. This meant a local discontinuity or stress/strain from the pressure of HTS coils on Nb₃Sn coils.

HTSW/LTSW 2020

Stress/Strain Management in Common Coil Structure

 Intermediate structure removes the local stress/strain concentration on Nb₃Sn coils

 A structure based on this principle was used in the recent PSI insert coil test
 Similar structure is being used in US-Japan

collaboration

Update from the Recent PSI/BNL Test

Magnetic Integration – Maxwell model

PSI insert coils had a structure to manage stress concentration

- Performance of DCC017 was no longer limited by the stress/ strain limit of Nb₃Sn coils
- DCC017 coil didn't quench as it reached over 12 T field
- This was higher than ever reached in DCC017 (DCC017 coils ran at a lower current – ~9 kA)

Magnet Division

Ramesh Gupta

Upcoming KEK/BNL HTS/LTS Hybrid Magnet Test, US Japan Collaboration May 17, 2023

Frame used in Previous HTS/LTS Hybrid Test

Test holder ready to be inserted in DCC017

Two HTS coils for testing in field parallel configuration (also included, two HTS cable samples from the fusion community)

HTS Insert Coil Structure in Frame Concept for US-Japan Test (two HTS coils in the 2-in-1 Nb₃Sn common coil dipole)

Summary and Discussion

- A unique structure of the DCC017 common coil dipole with large open space is beginning to show its utility to carry out systematic, rapid-turn-around, low-cost magnet R&D such as the one being performed under this US-Japan collaboration.
- The facility provides a vehicle for accelerator magnet R&D based on the racetrack coil. The general principle should be applicable to all designs, such as the use of mineral insulation and HTS/LTS hybrid R&D that is being performed under US-Japan collaboration.
- The basic design and most components are ready to perform this test in a few months. A regular discussion between the team member will ensure that the test goes smoothly.

EXTRA SLIDES

May 17, 2023

Slides from presentations made earlier

- During the last HTS/LTS hybrid test, the maximum performance of 12.3 T was limited by the LTS coils, and not by the HTS coils.
- Moreover, it was <u>NOT</u> limited by Nb₃Sn coils themselves, as they by themselves worked well. Performance got limited when Nb₃Sn coils were energized together with the HTS insert coils.
- Theory: Nb₃Sn coils were stress/strain limited locally (no intermedia structure to manage or distribute the stresses).
- This question/issue is important in all high field Nb₃Sn magnets.
- All new inserts are planned with intermediate structures. This PSI/BNL test was became a test to overcome the stress limit.
- It allowed higher peak field in DCC017 coils (10.7 T => ~12 T)
- More interesting what was observed accidently (magnet survived).

BigBox Structure for Stress Management (analysis to be discussed by PSI)

- This brings stress/strain on Nb₃Sn coil of DCC017 below the limit
- Due to the space limitation, the plates were made thicker on the high stress side and thinner on the high field side, with ~2 mm gap at most places.

Expected and Observed Test Results

- Field of DCC017 Nb₃Sn coils was not limited by their stress/strain limit
- DCC017 coil didn't quench as it reached ~12 T field (BigBox quenched)
- This was higher than ever reached in DCC017 (DCC017 coils ran at a lower current – ~9 kA)

Courtesy: PSI (results to be discussed by them

Magnet Division

Interesting Oservations

- PSI insert coil was powered in opposite direction then originally intended.
- This means that the coils moved significantly under Lorentz forces to close-in the 2 mm gap
- Many good discovery in science have come unintentionally (or accidently). Here is another one, even though not close to other spectacular discoveries

- No quenches in Nb₃Sn coils, means that the gap tolerances can be relaxed in such structures (though a large variation in the gap should perhaps be avoided)
- Structure of ~2.3 mm rather than ~4 mm was sufficient
- Stress diffusion avoiding local stress/strain to spreading the stress worked

Summary and Observations from the Quench Tests

- Note that the HTS coils didn't have their own independent support structure. When they were energized, they leaned on the LTS coils for support. It creates a pinching stress on the LTS coils at the corners where HTS coils rest.
- Several combinations of currents in the HTS coils and the LTS coils were tried. In all cases, LTS coils quenched (sometimes a little before short sample).

The hypothesis is that the quench is caused by the strain from the pinching forces. To minimize that either include a relatively thicker structure on the HTS coil to contain the Lorentz forces, or at least a thinner structure on the HTS to distribute/dilute the local stress/strain.

ANSYS Run Transverse Stress and Strain from Nb₃Sn 10 kA, HTS 2 kA

Stress and Strain on the LTS Coils from the HTS

Magnet Division

Ramesh Gupta

Upcoming KEK/BNL HTS/LTS Hybrid Magnet Test, US Japan Collaboration May 17, 2023

Hybrid Magnet Test Results HTS Coil Magnetization

Expect smaller conductor magnetization and hence field errors in a configuration when the background field is primarily parallel to the wide face of the HTS tape rather than perpendicular

Comparison between Field Perpendicular and Field Parallel Magnetization @2T Dipole Field

Field perpendicular (2016)

Additional field from the HTS coils in up and down ramp (Field from LTS coil subtracted)

A large remnant field (-0.2 T) due to magnetization in tape Field parallel (2020)

Order of magnitude reduction in the magnetization when the field is primarily parallel to the HTS tape

Both coils have the same Nomax insulation but 12 mm wide tape from different sources

Magnet Division

Ramesh Gupta

Upcoming KEK/BNL HTS/LTS Hybrid Magnet Test, US Japan Collaboration May 17, 2023

BROOKHAVEN NATIONAL LABORATORY

HTS Magnetization Studies (with no background field)

800

Superconducting Magnet Division 2 1.5 0.5 Field [T] -200 200 -600 -400 400 600 -0.5 -1 -1.5

- First ramp from 0 to 726A and back to 0
- Second, reverse polarity and ramp up and down to -417A
- Third, ramp to 417A and back to 0

—First cycle —Second cylce —3rd cycle HTSW/LTSW 2020 Magnetization Measurements of HTS Coil -Ramesh Gupta May 25, 2022 21

Current [A]

Superconducting Magnet Division HTS Magnetization Studies (background field primarily parallel)

HTS/LTS Hybrid Tests:

- Hold LTS coils at 500 A, 1 kA, 2 kA, 4 kA, 6
 kA, and 8 kA. For each background field
 from LTS, HTS coil is ramped up to 950 A
 and then back to 0
- The field is measured at two locations: at the center and also at the edge of the double pancake of the insulated coil

HTSW/LTSW 2020

Magnetization Measurements of HTS Coil

-Ramesh Gupta

May 25, 2022 22

Superconducting Magnet Division

Suggested Location of Hall Probes in US-Japan HTS Coils (double pancake)

Possible Locations (marked by X) of Hall probes: at the center, and at two edges of each pancake (5 locations) in SS, and one at the end

HTSW/LTSW 2020 Magnetization Measurements of HTS Coil -Ramesh Gupta May 25, 2022 23