

Superconducting Magnet Division

Magnet Note

Author: M. Anerella, J. Cozzolino, J. Escallier, G. Ganetis, A. Ghosh, R. Gupta, M. Harrison, P. Joshi, W. Louie, J. Muratore, P. Wanderer

Date: March 9, 2006

Topic No: MDN-644-33

Topic: Common Coil Design

Title:Construction and Test of Nb₃Sn Common Coil Magnet DCC017

M. Anerella	B. Parker
J. Cozzolino	S. Peggs
J. Escallier	F. Pilat
G. Ganetis	S. Plate
M. Garber	C. Porretto
A. Ghosh	W. Sampson
R. Gupta	J. Schmalzle
H. Hahn	J. Sondericker
M. Harrison	S. Tepikian
J. Herrera	R. Thomas
A. Jain	D. Trbojevic
P. Joshi	P. Wanderer
W. Louie	J. Wei
J. Muratore	E. Willen
S. Ozaki	

BNL MAGNET DIVISION NOTE 644-33

CONSTRUCTION AND TEST OF Nb₃Sn COMMON COIL MAGNET DCC017

M. Anerella, J. Cozzolino, J. Escallier, G. Ganetis, A. Ghosh, R. Gupta, M. Harrison, P. Joshi, W. Louie, J. Muratore, P. Wanderer

March 9, 2006

Summary

This note briefly reports construction features and test results for a common coil model dipole, DCC017. The cable was made from Oxford MJR Nb₃Sn strand. The cable was coated with Mobil1 oil and reacted prior to coil winding. Four racetrack coils were wound and vacuum impregnated. Stainless steel collars applied a modest preload only in the coil straight section and only perpendicular to the surface of the cable. The iron yoke and stainless steel shell limited coil strain perpendicular to the magnet aperture. Stainless steel end plates limited the coil axial strain to 0.2%. The coil overall length was 620 mm (24.4") and the usable coil aperture was 32 mm (1.25").

The highest quench of the magnet was at 10.8 kA, the expected limit of the conductor, corresponding to a calculated peak field of 10.8 T and a calculated central field of 10.3 T. After a thermal cycle, the magnet's lowest quench was at 9.2 kA (8.8 T central field). The conductor exhibited no dependence of quench current on ramp rate for ramps between 4 A/s and 200 A/s. Measured MIITS values were in general agreement with expectations that the magnet would be self-protecting.

Arup Ghosh's summary of the conductor properties, John Cozzolino's summary of the magnet construction, and Joe Muratore's summary of the quench data are appendices.

Test Results

Cross sections of the magnet are shown in Fig. 1 and 2. The magnet was tested during February, 2006, in a liquid helium bath at a nominal temperature of 4.5 K. Fig. 3 shows the calculated load line of the magnet for both peak and central fields, the quenches plotted on the peak field load line, and the short-sample limit of the conductor, based on strand tests (see appendix). Fig. 4 shows the quench history of the magnet. The threshold for detecting voltage spikes was 60 mV. Voltage spikes were seen during the ramp up and/or at the quench onset for many quenches. Quenches at the two highest currents were in coil 32, which was expected to reach its conductor limit before the other three coils. Ramp rates varied during the testing. A typical ramp profile was 25 A/s to 4 kA, then 3 A/s or 10 A/s to quench. For the ramp rate study (the last 15 quenches), the magnet was ramped at constant ramp rate to quench. The magnet was instrumented with voltage taps on the leads and at the splices between the coils. MIITS values were generally consistent with those expected based on calculations using the code QUENCH, which predicted that the maximum temperatures would be less than 400 K.

Acknowledgement. We wish to thank our technical staff for their careful work during the construction and testing of this magnet.

DCC017 Strand Data (including Bending Strain) and Magnet Load Line T=4.5K

DCC017 QUENCH CURRENTS

Appendix:

DCC017-Conductor parameters and Critical Current

Arup K. Ghosh

Abstract

This note summarizes the strand and cable that were used for the common coil magnet DCC017. The short sample limit of the magnet is calculated from strand measurements.

Introduction

The testing of short samples of Nb3Sn cable has been a difficult task as the nature of this superconductor renders the cable susceptible to critical current degradation due to improper handling and mechanical stresses. For the purposes of comparing the magnet performance, critical currents of the cable were calculated from critical current measurements made on strands extracted from the cable.

Strand and Cable Parameters

DCC017 used 30-strand cable made from 0.8 mm diameter strand manufactured by Oxford-Instrument Superconducting Technology using the Modified Jelly-Roll (MJR) process. The Nb3Sn wire used came from two billets, ORE-163 and ORE-202. Both billets nominally have the same copper fraction of 60%. Coils for this magnet were made from two lengths of cable, one of which BNL-N-4-0012 (ORE-163) was fabricated in New England Wire Co. (NEW), whereas cable BNL-6-O-B0899R (ORE-202) was made at LBL. All cable lengths for the four coils were vacuum impregnated with Mobil1®, and pre-annealed at 200C for 8 hours to drive-off the volatile constituents in the oil and also to remove the strain in the copper. The cable sections were then reacted in the vacuum furnace using the following schedule: 48 hrs/200C + 48 hrs/400C + 72 hrs/665C. After reaction the cable dimensions are shown in Table 1. Coil 32 used cable BNL-N-4-0012. Coils 33, 34 and 35 used BNL-6-O-B0899R

Cable ID	Cable Width	Cable Thickness	Cable Thickness	Cable Thickness
	(mm)	Major (mm)	Middle (mm)	Minor(mm)
BNL-N-4-0012				
Coil #32	12.72	1.513	1.509	1.504
BNL-6-O-B0899R				
Coil #33,34,35	13.17	1.529	1.513	1.509

Table	: 1

Strand Tests

Extracted strands from the cable were reacted on stainless-barrels using the same reaction schedule as the cable segments. Table 2 summarizes the critical current measurements in the range of 8 to 11.5T. The 12T value is obtained by fitting the data to the Summer's formulation for Jc-B- ϵ . The initial strain in the conductor is taken to be - 0.16%.

	Cu_Non	Bath								
WireID	Cu	Temp	Jc(12T)	Ic(12T)	Ic(11.5T)	Ic(11T)	Ic(10T)	Ic(9T)	Ic(8T)	RRR
ORE-163-ES	1.54	4.229	1795	355	395	440	542	957		46
ORE-202-ES	1.60	4.216	2030	393	434	482	590	710	852	62
ORE-202-ES	1.60	4.232	2025	391	433	481	585	707	848	60

T	ab	le	2
	$\mathbf{u} \mathbf{v}$	••	_

The cable was reacted on a 280mm diameter drum. The bending strain experienced by the strand when the cable from the drum is straightened or when the cable is bent at radius of 70mm is identical. The effect of the bending is to increase the compressive strain in the strand by 0.21% to a maximum of -0.37%. Using Summers' formulation, the critical current of the cable is calculated for coils 32 and 33, 34 and 35. Since coil 32 is one of the inner coils, it will be the limiting coil when the magnet reaches the short sample limit. The calculated critical currents at 4.2K and the strain degraded current at 4.5K (magnet operating temperature) are shown in Table 3.

	Coil-32		Coil 33,34,35	
Н, Т	Ic(4.22K, -0.16%)	Ic(4.5K, -0.37%)	Ic(4.22K, -0.16%)	Ic(4.5K, -0.37%)
7.0	29216	24745	31160	26485
8.0	24050	19983	25793	21532
9.0	19710	16077	21348	17458
9.5	17970	14383	19404	15687
10.0	16260	12838	17618	14068
10.5	14649	11427	15975	12587
11.0	13188	10137	14462	11230
11.5	11820	8959	13065	9986
12	10650	7882	11776	8847

Table 3

Using the calculations by R. Gupta for peak field (Table 4) the short sample limit of the magnet is calculated to be 10.8 kA

Tal	ble	4
-----	-----	---

B0	Bpk	l(cable)
Т	Т	А
9.01	9.45	9410
11.11	11.66	11760
13.13	13.8	14120

<u> Appendix: 10T Common Coil Magnet DCC-17 - J. Cozzolino 2/27/06</u>

This magnet, the first of its kind, is an outgrowth of the 10-turn react-and-wind Nb_3Sn coil program which has been ongoing at BNL. It has 1.25 in. of usable coil aperture that offers a background field of 10 Tesla for advanced cable testing. The plan is to operate this magnet in a vertical helium dewar while it is fitted with a 25kA cable sample holder. The sample holder shall be capable of applying a 20 kpsi warm assembly preload to straight and flat cable samples, and will be capable of resisting cable movement at full current, to within 0.2% strain.

The two pairs of coils in this magnet have been pre-reacted and wound on a 70mm diameter steel bobbin with a .007 inch thick nomex insulating separator. The utmost care was taken to avoid over-straining the cable. Winding tension did not exceed 12.0 lb. for the cable (15 lb for the nomex). No clamps or lacing was used during winding. The cable was permitted to make its natural transition from straight section to end. Therefore, the cable leaned over 7° as measured at the 45'th turn. No attempt was made to remove this condition due to overriding concerns regarding possible conductor damage. A relatively gentle 50 lb force was applied to the straight section of the coil to set its width and requisite shimming against the bobbin. All shims were tapered at the ends of the straight section to follow the shape of the cable turn.

The end and side saddles are made of stainless steel and have been custom fitted to each individual coil. No pre-compression was applied during coil impregnating or curing. All large voids were filled with fiberglass or G-10. Each coil was checked for straightness and flatness after curing. The coils have been pinned into pairs and shimmed to equal overall size with alumina filled epoxy. In between the layers of each coil pair is a .065 in. thick stainless steel sheet to aid in stress distribution at full power. Four .001 in. thick stainless steel strip heaters have been insulated with kapton and fitted to both sides of this sheet. Installed between each paired coil assembly, they are used for quench protection.

A collaring press was been built specifically for this magnet. It is sufficiently massive and stiff in order to maintain coil bending and/or twisting to safe levels. Coil prestress was strictly in the side-to-side direction (cable stack direction) and was relatively low (2.5 kpsi). An inflatable bladder was employed to maintain the coils hard outward against the collars during collaring. Stainless steel "keepers" were installed for the purpose of locking the coils against the collars.

The laminated iron yoke, along with the 1 inch thick stainless steel shell serves to support the collars at mid-span in resisting the lateral Lorentz forces generated by the coils. Axial strain due to the end Lorentz forces has been kept to within 0.2% by the five inch thick end plates.

Refer to the basic construction features listed below:

10T Common Coil Magnet DCC-17 Construction Features

Number of coils	4
Conductor Type	Nb ₃ Sn React and Wind
Coil OAL	24.4 in.
Coil Straight Section Length	12 in
Coil Inside Radius	2.75 in.
Coil Outside Radius	6.1 in.
Coil Conductor Width	.501517 in.
Number of Turns	45
Coil Curing Preload - Sides	0
Coil Curing Preload – Ends	0
Cable Insulation	Nomex 410, .007 in. thick
Coil Bobbin (Core) Material	Carbon Steel
Potting Agent	Stycast CTD-101K
Central Field	10 Tesla
Driving Current	10.8 kA
Yoke Length	25.7 in.
Yoke Weight	1750 lb.
Yoke O.D.	21 in.
Aperture	13.3 in. x 1.245 in.
Warm Collaring Preload – Sides	2.5 kpsi
Warm Collaring Preload – Ends	0
Collar Material	Kawasaki High-Mn SST
Bladder Pressure	40 psi
End plate Thickness	5 in.
Collar Key Type	Phosphor Bronze Tapered
Total Magnet Weight	3850 lb.
Coil Hypot Limit	1 kV

3-Mar-2006 J. F. Muratore Brookhaven National Lab

DCC017 QUENCH SUMMARY

Dewar #6 Top Hat - Common Coil I $_{ss} \sim 10800A$ Coils 32 and 34 are inner coils Coils 33 and 35 are outer coils

QUE	ENCH	RUN	CURRENT	Ramp Rate	Т	Press	START	MIITS	COIL
COL	#	#	(A)	(A/s)	(K)	(psi)	(ms)		
T =	= 4.5	K (nom)							
spi	1 ikes	11 (d)	7132	20	4.442	17.77	-67	15.4	34
no	2 spik	12 es	8008	10	4.478	17.88	-59	16.7	35
spi	3 Lkes	13	8530	10	4.541	19.32	-33	15.3	32
spi	4 ike	14	8700	10	4.541	19.38	-34	16.2	34
spi	5 Lke,s	15 p at st	8699 art	10	4.542	19.23	-57	18.0	33
spi	6 Lke,s	16 p at st	8809 art	10	4.542	19.38	-26	14.9	32
no	7 spik	17 es	8806	10	4.546	19.33	-29	15.5	34
no	8 spik	18 es	8869	10	4.541	19.32	-28	15.7	32
no	9 spik	19 es	8747	10	4.561	19.61	-32	15.7	32
no	10 spik	20 es	8709	10	4.562	19.50	-23	14.7	34
spi	11 ikes	21	8943	10	4.558	19.51	-32	15.9	32

no	12 spike	22 es	9315	10	4.562	19.28	-24	15.5	34
no	13 spike	23 es	9423	10	4.560	19.32	-35	17.0	34
no	14 spike	24 es	9567	10	4.561	19.44	-14	14.8	32
spi	15 ike	25	9622	10	4.559	19.31	-26	16.5	35
spi	16 ikes	26	9703	10	4.547	19.31	-23	16.2	35
spi	17 ikes	27	9914	10	4.564	19.72	-27	16.8	35
spi	18 ike	28	9921	10	4.577	19.65	-25	16.2	32
no	19 spike	29 es	9938	10	4.577	19.83	-21	15.7	32
sp	20 i ke	30	8813	10	4.578	19.69	-20	14.9	32
011	21	31 no	9049 spikes	10	4.560	19.57	-26	15.6	32
		110	opinco						
no	22 spike	32 es	10062	10	4.535	19.60	-40	18.0	33
no	22 spike 23 spike	32 es 33 es	10062 8699	10 10	4.535 4.529	19.60 19.66	-40 -27	18.0 15.3	33 32
no no min	22 spike 23 spike	32 es 33 es 34	10062 8699 10028	10 10 10	4.535 4.529 NO QUEN	19.60 19.66 NCH; RAN .	-40 -27 AT 100:	18.0 15.3 28 FOR 1	33 32 .0
no no mir	22 spike 23 spike nutes	32 es 33 es 34 35	10062 8699 10028 10028	10 10 10 10	4.535 4.529 NO QUEI NO QUEI	19.60 19.66 NCH; RAN .	-40 -27 AT 100:	18.0 15.3 28 FOR 1	33 32 .0
no no mir	22 spike 23 spike nutes 24	32 es 33 es 34 35 35 spi	10062 8699 10028 10028 9723 ikes	10 10 10 10 25	4.535 4.529 NO QUEN NO QUEN 4.557	19.60 19.66 NCH; RAN . NCH 19.25	-40 -27 AT 100: -19	18.0 15.3 28 FOR 1 15.4	33 32 .0 32
no no min	22 spike 23 spike 24 25 ikes	32 es 33 es 34 35 sp: 36	10062 8699 10028 10028 9723 ikes 10372	10 10 10 10 25 10	4.535 4.529 NO QUEN NO QUEN 4.557 4.544	19.60 19.66 NCH; RAN NCH 19.25 19.27	-40 -27 AT 1002 -19 -10	18.0 15.3 28 FOR 1 15.4 12.2	33 32 .0 32 32
no min sp: no	22 spike 23 spike nutes 24 25 ikes 26 spike	32 es 33 es 34 35 sp: 36 37 es	10062 8699 10028 10028 9723 ikes 10372 8855	10 10 10 10 25 10	4.535 4.529 NO QUEN NO QUEN 4.557 4.544 4.538	19.60 19.66 NCH; RAN 19.25 19.27 19.22	-40 -27 AT 1002 -19 -10 -26	18.0 15.3 28 FOR 1 15.4 12.2 14.3	33 32 .0 32 32 32
no min sp: no	22 spike 23 spike nutes 24 25 ikes 26 spike 27 ike	32 es 33 es 34 35 35 sp: 36 37 es 39	10062 8699 10028 10028 9723 ikes 10372 8855 10097	10 10 10 10 25 10 10 10	4.535 4.529 NO QUEN 4.557 4.544 4.538 4.555	19.60 19.66 NCH; RAN 19.25 19.27 19.22 19.35	-40 -27 AT 100: -19 -10 -26 -29	18.0 15.3 28 FOR 1 15.4 12.2 14.3 17.2	33 32 .0 32 32 32 32 34

29 no spił	41 kes	9742	10	4.543	19.22	-32	17.2	34
30 no spił	42 Kes	10076	10	4.531	19.17	-23	16.8	34
31 spike,s	43 sp at	9794 start	10	4.556	19.38	-22	16.2	34
32 no spił	44 kes	10384	3	4.534	19.41	-12	12.1	34
33 no spił	45 kes	10136	3	4.555	19.34	-14	13.7	34
34 no spił	46 Kes	9359	3	4.545	19.45	-18	14.3	34
35 no spił	47 Kes	9356	25	4.551	19.35	-20	15.1	34
36 spike	48	10348	25	4.548	19.28	-23	16.8	34
37 spikes,	49 sp at	10467 . start	25	4.526	19.48	-40	19.1	33
38 spikes	50	10475	25	4.542	19.50	-26	17.4	34
Thermal $T = 4.5$	l Cycl 5K (nc	e m)						
39 spike,s	52 sp at	9286 start	25	4.558	19.55	-15	14.0	32
40 no spił	53 ces	9284	25	4.379	19.41	-31	16.6	33
41 spikes	54	10224	25	4.350	19.63	-16	13.1	32
42 spikes	55	10286	25	4.560	19.66	-12	14.6	32
43 spikes	56	10258	25	4.331	19.57	-14	12.8	32
44 spikes	57 (i)	10217	25	4.549	19.63	-31	10.9	32(i)

spi	46 kes	60 (j , k)	10115	10	4.519	19.40	-20	10.6	32(j)
spi	47 .ke,s	61 p at st	10051 tart	10	4.530	19.47	-27	16.1	34
spi	48 kes	62	10252	10	4.530	19.57	-40	18.2	33
spi	49 .kes	63	10122	10	4.532	19.60	-12	12.9	34
no	50 spik	64 es	10038	10	4.522	19.47	-13	13.5	34
no	51 spik	65 es	10435	10	4.525	19.47	-25	15.8	34
20	52	68	10585	10	4.373	19.70	-14	14.4	32
110	53	69	9311	10	4.519	19.66	-15	14.4	32
no	54	70	10268	10	4.549	19.70	-19	15.2	35
spi	.ke								
RAM spi	IP RA 55 kes	TE STUI 71	DY 10619	25	4.551	19.73	-10	12.2	34
sni	56 kes	72	10615	25	4.533	19.67	-14	13.9	34
spi	57 kes	73	10107	50	4.501	19.64	-20	15.9	32
spi	58	74	10062	50	4.535	19.61	-22	16.4	32
5p1	59	75	9540(n)	100	4.553	19.64	-21	15.4	32
spi	60	76	9921	100	4.402	19.28	-22	16.1	32
spi	.kes 61	77	10670	200	4.529	19.63	-20	15.5	32
spi	kes	(m)							
spi	62 kes	78 (m)	10773	200	4.462 (1)19.89	-17	14.5	32
spi	63 kes	81 (m)	10567	200	4.520 (1)19.29	-15	14.0	32
spi	64 kes	82 (m)	10846	200	4.525 (1)19.39	-22	16.4	32

65 spikes	83 (m)	10552	200	4.514	19.31	-14	15.0	32
66 spikes	84	10537	10	4.526	19.39	-23	16.1	35

Notes:

Ramp rate for quenches 2-23, 25-31, and 46-54 was 25A/s to 4000A, then 10A/s to quench (standard ramp). For quench 31, two cycles 40- 4000A at 25A/s were done before the standard ramp to quench. For quenches 52 and 54, there was a stop at 10000A for 5 min.							
then 10A/s to quench (standard ramp). For quench 31, two cycles 40- 4000A at 25A/s were done before the standard ramp to quench. For quenches 52 and 54, there was a stop at 10000A for 5 min.							
4000A at 25A/s were done before the standard ramp to quench. For quenches 52 and 54, there was a stop at 10000A for 5 min.							
quenches 52 and 54, there was a stop at 10000A for 5 min.							
$P_{\text{construct}}$ and $P_{\text{construct}}$ an							
Ram rate I O r O O O O O O O O							
then							
3A/s to guench.							
Ramp rate for quenches 24, 35-45 was 25A/s to quench.							
RAMP RATE STUDY:							
Ramp rate for quenches 55-56 was 25A/s to quench.							
Ramp rate for quenches 57-58 was 50A/s to quench.							
Ramp rate for quenches 59-60 was 100A/s to quench.							
Ramp rate for quenches 61-62 was 200A/s to quench.							
Ramp rate for quenches 63-65 was 25A/s to 1000A, then 200A/s to							
quench.							
Ramp rate for quench 66 was 25A/s to 4000A then 10A/s to quench.							
b) The temperature sensor recorded was silicon diode TS4. It had a							
redundant							
sensor TS3 associated with it. They were located at the nonlead end							
(bottom) of the magnet. There were also a pair of diodes at lead end							
bottom)							
of the magnet.							
c) Data acquisition sampling rate was IkHz for all quenches.							
d) Spikes: "sp at start" means spike right at quench start.							
"spike" or "spikes" mean one or more spikes were seen earlier than							
the quench start. These had to be spikes greater than 60mV to be							
seen above the noise level. "no spikes" means that no spikes greater							
than 60mV were seen previous to the quench start.							
e) For quenches in coll 32, coll 34 also quenched later, typically very							
slowly at lirst, at -9ms to oms, then laster at about soms							
(sometimes this was sooner, at about 35ms).							
r) For quenches in coll 34, coll 32 also quenched later.							
g) For quenches in coll 33, colls 34 and 32 also quenched later.							
i) Guenches in coll 55, colls 54 and 52 also quenched later.							
1) Quench #44 had an unusual signature. Colls 52, 55, and 54 all $\frac{1}{2}$							
started very slowly, at about -slins, colls 52 and 54 both take off							
-13ms Coil 32 resistance continues to steeply rise while the other							
coils.							
including 34. decrease This all takes place prior to strip heaters							
firing.							
Also, spike activity was more pronounced than for this guench than							
typical.							

j) Quench #46 had an unusual signature. Coils 32, 34, and 35 all started very slowly, at about -20ms; coils 32 and 35 both take off steeply, at about -3ms. Coil 32 resistance continues to steeply rise, while the other coils,

including 35, decrease. This all takes place prior to strip heaters firing.

Also, spike activity was more pronounced than for this quench than typical.

k) Starting with quench #46, the delay between the quench detector stop pulse and power supply shutoff was 16ms. Previous to this quench, the

delay was about 58ms. This was done by inhibiting the power supply firing circuit. The delay was minimized in order to decrease the amount of heating in the coils after each quench.

- 1) Prior to quenches 62-64, there were relatively large pressure fluctuations.
- m) Prior to quenches 61-65, there was high spike activity, including a spike wider than typical in quench 62.
- n) For quenches 59-65, ramped at 100A/s and higher, quench current data displayed are from the fast data logger (LeCroy) Ch 101 current signals. These are the maximum current reads (except isolated noise spikes) and are corrected for the errors introduced by the isolation amplifier which the signal must go through before entering the logger. All other current data are the peak values obtained from the Fluke 8502A Meter which is too slow to give consistently correct readings at the high ramp rates, but has a more accurate voltage measurement than the logger.