Assessment of Training Performance, Degradation and Robustness of Paraffin-Wax Impregnated Nb₃Sn Coil (BigBOX) under High Magnetic Field

D. M. Araujo, on behalf of PSI/CHART/Magdev M. Kumar and R.Gupta on behalf of BNL/MDP

July 5th, 2023

Agenda

- Magnet R&D Approach for High Field Magnets (R. Gupta)
- Nb₃Sn Coil (BigBOX) integration into DCC17 Magnet (D. M. Araujo)
- Test Setup, Quench Detection and Results (M. Kumar)
- Analysis of Results and Conclusions (D. M. Araujo)
- DCC17 Performance with Stress-management Structure (R. Gupta)

- Magnet R&D Approach for High Field Magnets (R. Gupta)
- Nb₃Sn Coil (BigBOX) integration into DCC17 Magnet (D. M. Araujo)
- Test Setup, Quench Detection and Results (M. Kumar)
- Analysis of Results and Conclusions (D. M. Araujo)
- DCC17 Performance with Stress-management Structure (R. Gupta)

Magnet R&D Approach for High Field Magnets

- Next generation high field magnets require development of several new technologies.
- New technologies must be demonstrated in an R&D magnet before they can be accepted.
- Common coil dipole DCC017 at BNL was specifically designed and built so that new coils can inserted and tested as an integral part of the magnet for a low-cost, rapid-turn-around R&D.
- This was used in demonstrating record hybrid 12.3 T HTS/LTS field (MDP 2020 test) and multiple R&D tests of very different programs in one go (see insert above used in HEP/FES test)
- PSI test was designed to demonstrate (a) wax impregnated coil technology, (b) stress-managed structures, (c) record HTS/LTS hybrid field, and (d) pole coil for field quality in common coil.

Past Proposals for Demonstration of Pole Coils for Field Quality in Common Coil Dipole DCC017

Figure 6: DCC017 as-built, without pole coils (left), and with pole coils to improve field quality (right).

20 T design study goal: all harmonics <3 units

Table II. Left-calculated multipoles in as-built DCC017, showing a large value for b3 (180 units) and a2 (-192 units). Right-calculated multipoles with pole coils added, showing all values below 3 units.

	DCC017 w	ithout	pole coils (p	resent	design)	
MAIN MAGNE	FIELD (T) T STRENGTH (T	/(m^(n	-1))			0.995409 0.9954
NORMA	L RELATIVE MU	LTIPOL	ES (1.D-4):			
b 1:	10000.00000	b 2:	0.00000	b 3:	187.58719	
b 4:	-0.00000	b 5:	-2.01358	b 6:	0.00000	
b 7:	-0.13995	b 8:	-0.00000	b 9:	0.00365	
b10:	0.00000	b11:	0.00136	b12:	-0.00000	
b13:	-0.00014	b14:	0.00000	b15:	-0.00000	
b16:	-0.00000	b17:	0.00000	b18:	0.00000	
b19:	-0.00000	b20:	-0.00000	b		
SKEW	RELATIVE MULT	IPOLES	(1.D-4):			
a 1:	-0.00000	a 2:	-192.09501	a 3:	0.00000	
a 4:	6.49804	a 5:	-0.00000	a 6;	0.33413	
a 7:	0.00000	a 8:	-0.03499	a 9:	-0.00000	
a10:	-0.00209	a11:	0.00000	a12:	0.00053	

DCC017 with pole coils (proposed Phase II design)

MAIN F	IELD (T)			******		1.065489
MAGNET	STRENGTH (1	r/(m^(n-1	.))			1.0655
IODMAI		II TTOOLEC	11 0 11.			
VURGINAL	. RELATIVE PR	LITPOLES	(1.0-4);	100		
b 1:	10000.00000	b 2:	-0.00000	b 3:	0.00071	
b 4:	-0.00000	b 5:	0.00045	b 6:	-0.00000	
b 7:	2.69589	b 8:	-0.00000	b 9:	0.38260	
b10:	-0.00000	b11:	-0.06197	b12:	0.00000	
513:	-0.02446	b14:	0.00000	b15:	-0.00522	
b16:	0.00000	b17:	0.00080	b18:	0.00000	
b19:	0.00096	b20:	0.00000	b		
SKEW F	ELATIVE MULT	IPOLES (1.D-4):			
a 1:	0.00000	a 2:	0.00049	a 3:	0.00000	
a 4:	-0.00002	a 5:	0.00000	a 6:	0.30753	
a 7:	-0.00000	a 8:	0.26673	a 9:	-0.00000	
a10:	-0.01777	a11:	-0.00000	a12:	-0.01224	
	0 00000		0 00040	.15.	0.00000	

Addressing Pole Coil Challenge with Flared Ends (SBIR Phase I with PBL)

Phase II for integrating such coils with common coil dipole DCC017 was not funded

Figures 8 a&b: CAD cross section of support-structure concept, with structure (gray), pole coils (pink), main coils (cyan), wedges & SS collars (yellow), and magnetic iron (pale chartreuse). Left: Detail of support structure for the upper aperture. Right: Cross section through both apertures.

Attempt to reach a higher HTS/LTS hybrid field in the PSI test with HTS coil in structure

Agenda

- Magnet R&D Approach for High Field Magnets (R. Gupta)
- Nb₃Sn Coil (BigBOX) integration into DCC17 Magnet (D. M. Araujo)
- Test Setup, Quench Detection and Results (M. Kumar)
- Analysis of Results and Conclusions (D. M. Araujo)
- DCC17 Performance with Stress-management Structure (R. Gupta)

LTS & Hybrid Roadmap Outlook

Goals

• Assessing

- SC margin, with the conductor under transversal pressure
- Training performance
- ... and validating new technologies
 - –load free magnet
 - Wax impregnation process
 - -Stress-managed structure
 - -New ceramic insulation
 - -Interface conditions

BigBOX winding

High temperature glassceramic coatings, A. Brem

BigBOX impregnation, M. Daly and C. Hug

Page 9

BigBOX and DCC17 Integration 1/2

- Hard-way bending direction, otherwise the level of stress would be too low
- The coil block has 13 turns
- Bending radius is 30 mm
- Straight section of 100 mm
- LARP cable was used to produce BigBOX

BigBOX and DCC17 Integration

Coils and Yoke Cross-section

BigBOX and DCC17 Integration 2/2

- The self-field contribution on the horizontal direction is small
- Due to the self-field contribution on the vertical direction, BigBOX field gradient is high
- The low-field turn is the one with high mechanical stress

Ic fitting and BigBOX load lines

- Strand: 0.7 mm RRP OST 54/61
- Operational temperature: 4.2 K
- Cable bare width: 7.79 mm
- Cable bare thickness: 1.28 mm
- Insulation thickness: 155.0 μm
- Max current: 20 kA (after upgrade)
- Background field of 9 T on the vertical direction Higher and Lower Short sample obtained from E. Barzi *et al.*, "RRP Nb3Sn strand studies for LARP," *Applied Superconductivity, IEEE Transactions on,* vol. 17, pp. 2607–2610, Jul. 2007, doi: <u>10.1109/TASC.2007.899579</u>.

By changing DCC17 background field the BigBOX load line changes, which allow us to change its stress level

Agenda

- Magnet R&D Approach for High Field Magnets (R. Gupta)
- Nb₃Sn Coil (BigBOX) integration into DCC17 Magnet (D. M. Araujo)
- Test Setup, Quench Detection and Results (M. Kumar)
- Analysis of Results and Conclusions (D. M. Araujo)
- DCC17 Performance with Stress-management Structure (R. Gupta)

Test set up: Sample

Instrumentation Wiring of BigBOX

Cryo Preamp on BigBOX

Vtap Block on BigBOX

Test set up: Sample installation

Test set up: Power Circuit and DAQ

Test Sequence

- Preliminary electrical checkout at room temperature in Test Dewar 6.
 - Room temperature check of all resistances (coils, leads, splice, quench protection heaters) and to ground.
 - Hipot tests: 500 V.
 - 1 A voltage taps check.
- Initial cold electrical checkout at 4.5 K.
 - Same as room temperature.
- Common coil checks
 - Strip heater quench: half coil voltage trip at 2kA (20 A/s), strip heater voltage 450 V: check voltages etc => calculate MIITS
 - Strip heater #1 quench: half coil voltage trip at 4kA (20 A/s), strip heater voltage 450 V: check voltages etc => calculate MIITS
 - Strip heater #2 quench: half coil voltage trip at 4kA (20 A/s), strip heater voltage 450 V: check voltages etc => calculate MIITS
- Insert coil tests
 - 1. Set Big box to short. Ramp common coil to maximum stable current at 20 A/s. Monitor for stability.
 - 2. Set Common coil to short. Ramp big box to 10 kA at 20 A/s. Trip manually. Verify Quench detector operation.
 - 3. Ramp common coil to I_{CC} kA with 20 A/s. Ramp big box to max current I_{MDP} until quench.
 - If Big box quenches first, discharge Big box instantly, wait a few ms discharge common coil.
 - If common coil quenches first, discharge Big box instantly, wait a few ms discharge common coil.
 - 4. Repeat step 3 at common coil currents 7 kA, 8 kA, 9 kA, find I_o. Repeat the same with CC current going down.
 - 5. If time permits, perform electromagnetic cycling of bigbox.
 - 6. Repeat test with I_{cc} 9 kA.

Simplified power circuit

Main Results

Abbreviations

 I_{CC} = current in common coil, B_{CC} = magnetic field in common coil

 I_{BB} = Quench current in bigbox coil

Run #	I _{cc} (kA)	I _{BB} (kA)	B _{cc} (T, estimated)
1	7.195	12.979	7.15
2	8.04	12.118	7.97
3	9.124	10.845	9.00
4	8.0393	12.06	7.96
5	7.0398	13.359	6.99
6 - 9	9.0	10.3	8.90
10	9.0395	10.769	8.92

There was a trip during the fourth electromagnetic cycle

- Magnet R&D Approach for High Field Magnets (R. Gupta)
- Nb₃Sn Coil (BigBOX) integration into DCC17 Magnet (D. M. Araujo)
- Test Setup, Quench Detection and Results (M. Kumar)
- Analysis of Results and Conclusions (D. M. Araujo)
- DCC17 Performance with Stress-management Structure (R. Gupta)

Training performance

Stress and Field distributions

7 T background field

9 T background field

By increasing DCC17 background field, BigBOX stress increases and margin decreases.

BigBOX as a tool for degradation studies

- First, the coil is powered and the distribution of stress is the one given in the plot.
- After a number of cycle, the background field or BigBOX current direction is inverted.
- Now, the new high-field turn has a historic of high stress. Is the coil be able to go to short-sample again?

- Magnet R&D Approach for High Field Magnets (R. Gupta)
- Nb₃Sn Coil (BigBOX) integration into DCC17 Magnet (D. M. Araujo)
- Test Setup, Quench Detection and Results (M. Kumar)
- Analysis of Results and Conclusions (D. M. Araujo)
- DCC17 Performance with Stress-management Structure (R. Gupta)

Need for Stress Management with Insert in DCC017

U.S. MAGNET DEVELOPMENT

PROGRAM

Hybrid Magnet Test Results (1)

Theory: Local stresses/strain in Nb₃Sn coil limited the performance of Nb₃Sn coil (and hence of HTS/LTS hybrid dipole test in 2020 to 12.3 T) Solution and test: reduce/diffuse local strain with intermediate structure on insert or pads in between (stress management) – incorporated in future tests Global Coordinate System Time: 1 1/28/2020 3:52 PM 18 Max 3.4 **Stresses for 10 KA in** -4.1 -12 Nb₃Sn and 1 kA in HTS -19 -26 -34 -41 -49 -56 -64 -71 -78 -86 Min C: Static Structural LTS Transverse Strain Type: Normal Elastic Strain(X Axis) Unit: mm/mm Global Coordinate System Time: 1 1/28/2020 3:50 PM 0.000468 Max 0.000297 0.000127 -4.29e-5 Strain for 10 KA in -0.000213 -0.000383 -0.000554 Nb₃Sn and 1 kA in HTS -0.000724 -0.000894 -0.00106 -0.00123 -0.0014 -0.00157

C: Static Structural LTS Transverse Stress Type: Normal Stress(X Axis)

-0.00174

-0.00192 Min

Unit: MPa

Stress-managed Inserts in the Common Coil Dipole

All inserts in DCC017 now have a structure around the coil

~2 mm plate on one side and ~4 mm on the other side

Lorentz Forces on PSI Insert Coil (with design & reversed polarity)

coil gets squeezed (stressed) more in the design case

Field on PSI Coil & DCC017 Coil (with design & reversed polarity)

Short Sample Reached

DCC017 Short Sample Calculations with PSI Insert

I=9.1 kA B_{pk}=11.5 T

DCC017 reached 11.5 T (earlier was 10.8 T)

Value with the design polarity ~12.3 T

Acknowledgment

- BNL testing and magnet design teams
- BNL for providing LARP cable for the produced coil
- LBNL colleagues for the useful discussion on the cable HT
- PSI Magnet section for supporting the realization and initial tests of the demonstrator

• Funding for this collaboration came from PSI, CHART, CERN-HFM Program and US-MDP

Additional Slides

Some pictures of the manufacturing process

• Winding

• impregnation

- Closing the thin cover

Scheme during the tests...

- BigBOX insulated in respect to the Frame
- Frame could, therefore be in contact with DCC017 structure
- BigBOX will be insulated from the **Common coils**
- Highpot test box and the Frame (750 V) successfully achieved

High-pot tests

- Box to Frame
- 100 V: > 100 Gohm
- 250 V: 260 GOhm
- 500 V: 235 GOhm
- 750 V: 233 GOhm

Scheme during the electrical tests and tests

- Latest resistance between coil and box ~57 kOhm
- All boxes components are at the same electrical potential (convers, box and pole)
- Feeding current between L1 or L2 and the mass
- Measuring the voltage drop between vtaps and a reference

Evolution of resistance during cooling down

- Resistance measured from the coil to the mass
- From about 60 kOhm to 350 kOhm

First set of measurements

- Current from L1 or L2 and mass: 0.276
 mA
- Voltage across the power supply: 13.78
 V
- Oscillation between even and odds vtaps
- Let's look to the vtaps separately

First set of measurements

• Looking to evens and odds vtaps separately

• Current leaking at L2

Measurements

• Oscillation when changing the reference from L1 to L2

M. Duda, M. Daly

• Current leaking at L2

Run 10

3D magnetic and mechanical analysis

3D Magnetic Analysis

 B_{peak} on BigBOX = 12.21 T BigBOX I_{run10} = 10.77 kA B_{peak} on DCC17 = 10.79 T DCC17 I_{run10} = 9.04 kA

3D Mechanical Analysis: DCC17 LTS Coils

 ϵ_{peak} on DCC17 = 0.00196 Due to BigBOX forces This peak of strain has a value close to the on DCC17 coil ends

3D Mechanical Analysis: DCC17 LTS Coils

Max S_{VM} = 82 MPa On the ends Similar peak of VM stress on the ends and BigBOX region

3D Mechanical Analysis: DCC17 Shell and Endplate (both made of stainless steel)

Max S_{eqv} on DCC17 End-plate = 155 MPa

3D Mechanical Analysis: DCC17 Collar (stainless steel) and Iron

Max S_{eqv} on DCC17 Collar = 52 MPa

Max S_{MPS} on DCC17 Iron = 61 MPa

3D Mechanical Analysis: BigBOX LTS Coil

Max S_{VM} = 175 MPa

 ε_{peak} on BigBOX = 0.007

3D Mechanical Analysis: BigBOX Structure and Covers

Max S_{eqv} on BigBOX structure = 201 MPa

Max S_{eqv} on Covers = 697 MPa Due to the inverted current