



# Progress in Q2pF End Design

Ramesh Gupta November 7, 2023



# Background

- Previous Q2pF Ends were designed for a different cross-section, with different number of turns & with a slightly different cable. This is the first go at the Ends for cross-section with perfectly symmetric wedges.
- The attempt will be to satisfy the same goals as in the earlier design:
  - > Peak field in Ends remain close to the 2-d peak field in the X-section.
  - Small integrated harmonics.
  - End turn layout should be as vertical as possible at pole (kept 70° in all cases) and layout looking visually reasonable before printing 3-d parts to try different variations. We will follow the useful experience from the single turn winding test of B1pF.



Ramesh Gupta

# LHC Style Cable used in Quad & Dipole (based on full keystone for Q2pF and B1ApF)

|       | E Cable Geometry | ł           |                        |                |                   |             |                                  |                      |                     |            |             |
|-------|------------------|-------------|------------------------|----------------|-------------------|-------------|----------------------------------|----------------------|---------------------|------------|-------------|
|       | No Nane          | height      | width_i                | width_o        | ns                | transp.     | degrd Comment                    | 8                    |                     |            |             |
| FIC   | 1 EICLHCB        | 15.1        | 1.816                  | 1.984          | 28                | 115         | 5 LHC IN KEYSTOE FOR EIC DIPOLE  | $\overline{\square}$ |                     |            |             |
|       | 1 EICLHCQ        | 15.1        | 1.79                   | 2.01           | 28                | 115         | 5 LHC IN KEYSTONE FOR EICIR QUAD | Keystor              | ne angle for cable  | width << / | oil readius |
|       | 1 EICLHC01       | 15.1        | 1,786                  | 2.014          | 28                | 115         | 5 LHC CABLE KEYSTOR FOR EIC 4,2K | NC yotor             | ine angle for cable | WIGET SS C | Conneadius  |
|       | 2 EIC3642        | 19.4        | 1.773                  | 2.027          | 36                | 115         | 3 EIC 36 STRAND 04.2K            |                      |                     | QZpF       | B1ApF       |
|       | 3 EIC3618        | 19.4        | 1,773                  | 2,027          | 36                | 115         | 3 EIC 36 STRAND 01,8K            | Cable h              | eight               | 15.1       | 15.1        |
|       | 4 EIC3642A       | 19.4        | 1.788                  | 2.012          | 36                | 115         | 3 EIC 36 STRAND 04.2K 2 Layers   | Cable m              | hid-thickness       | 1.9        | 1.9         |
| I HC  | 5 CABLEO1        | 15.1        | 1.736                  | 2.064          | 28                | 115         | 5 MB INNER LAYER,STR01           | Incul In             | na cida)            | 0.12       | 0.12        |
| 2110  | 6 CABLE02        | 15,1        | 1,362                  | 1,598          | 36                | 100         | 5 MB OUTER LAYER,STR01           | insui (o             | ne side)            | 0.12       | 0.12        |
|       | 7 SINGLE         | 0.94        | 0.94                   | 0.94           | 1                 | 0           | 0 SINGLE STRAND                  | Coil i.r.            |                     | 140        | 185         |
|       | 8 GSI1CAB        | 9,74        | 1,061                  | 1,271          | 30                | 74          | 0 GSI001 (RHIC) CABLE            |                      |                     |            |             |
|       | 9 GSI001         | 9,73        | 1.111                  | 1.321          | 30                | 74          | 0 GSI001 following Wanderer      |                      |                     |            |             |
|       | 10 20MMCABLE     | 20          | 1.736                  | 2.172          | 37                | 0           | 0 20mm cable                     | Aug Da e             |                     | 147.55     | 103.55      |
|       | 11 20MMCBNDK     | 20          | 13,8                   | 13,8           | 290               | 0           | 0[7x20wm cable, no keystone      | Avg Rad              | 1                   | 147.55     | 192.55      |
|       | 12 20MMCAB2      | 20          | 1.8                    | 2              | 37                | 0           | 0 20 mm cable 2                  | dt                   |                     | 0.2190     | 0.1678      |
|       |                  |             |                        |                |                   |             |                                  | Width i              |                     | 1.790      | 1.816       |
|       | E Cable Definit: | 100         |                        |                |                   |             |                                  | width o              | 5                   | 2.010      | 1.984       |
|       | No Nane          | Cable Geom. | Strand Filame          | nt Insul       | Trans             | Quench Mat. | T_o Connent                      |                      |                     |            |             |
| FIC   | 1 EICLHCB2K      | EICLHCB     | STREIC1 NBTII          | ALLPOLY        | L TRANS1          | NONE        | 2 LHC INNER FOR EIC IR QUA       | 0.92                 | Note: Key           | stone      | s are       |
|       | 2 EICLHCQ2K      | EICLHCQ     | STREIC1 NBTII          | ALLPOLY        | L TRANS1          | NONE        | 2 LHC INNER FOR EIC IR DIP       | OLE 6                |                     | 510110     | Juic        |
|       | 3 LHCIN42K       | EICLHC01    | STREIC1 NBTII          | ALLPOLY        | L TRANS1          | NONE        | 4.2 LHC INNER FOR EIC 04.2K      |                      | reduce              | d for E    |             |
| LHC 🖂 | YELLONIN         | CABLE01     | STR01 NBTII            | ALLPOLY        | L TRANS1          | NONE        | 1.9 V6-1 DESIGN DIPOLE INNER     |                      |                     |            |             |
|       | S YELLONOU       | CABLE02     | STR02 NBTID            | ALLPOLYC       | L TRANS1          | NONE        | 1.9 V6-1 DESIGN DIPOLE OUTER     |                      |                     |            |             |
|       |                  | LOTHOUR .   | Laboration Description | 100 mm m 100 s | The server server | frame and   | L DISTURIE STRAUE COURUSTORS     |                      |                     |            |             |

Cables considered for EIC: "EICLHCB2K" and "EICLHCQ2K" (EICLHCB and EICLHCQ) Similar to LHC inner: "YELLONIN" (CABLE01)



Ramesh Gupta

sh Gupta Cable Parameters of the EIC IR Cable Magnets

March 22, 2022



Brookhaven National Laboratory Magnet Division

Ramesh Gupta

## Design with Perfectly Symmetric Wedges (with EIC "Q" cable)

### 2-d Field Harmonics

| HARMONIC ANALYSIS NUMBER                   |        |
|--------------------------------------------|--------|
| MAIN HARMONIC                              |        |
| REFERENCE RADIUS (mm)                      | 83.000 |
| X-POSITION OF THE HARMONIC COIL (mm)       | 0.000  |
| Y-POSITION OF THE HARMONIC COIL (mm)       | 0.000  |
| MEASUREMENT TYPE ALL FIELD CONTRI          | BUTION |
| ERROR OF HARMONIC ANALYSIS OF Br 0.6       | 776E-0 |
| SUM (Br(p) - SUM (An cos(np) + Bn sin(np)) |        |

| MAIN  | FIELD  | (T)  |       |     |       |   | <br> | ••• | <br>••• | ••• | ••• | • • | • | • | <br>• • | 3 | .14 | 175  | 02  |
|-------|--------|------|-------|-----|-------|---|------|-----|---------|-----|-----|-----|---|---|---------|---|-----|------|-----|
| MAGNE | T STRE | NGTH | H (T/ | (m^ | (n-1) | ) | <br> |     | <br>    |     |     | • • | • | • | <br>    |   | 37  | . 92 | 217 |

#### NORMAL RELATIVE MULTIPOLES (1.D-4):

Brookhaven

**Magnet Division** 

| b 1: | -0.14254 | b 2: | 10000.00000 | b 3: | 0.00250  |
|------|----------|------|-------------|------|----------|
| b 4: | -0.01577 | b 5: | 0.02641     | b 6: | -0.10295 |
| b 7: | -0.00201 | b 8: | -0.00094    | b 9: | 0.00065  |
| b10: | -0.40774 | b11: | -0.00011    | b12: | 0.00000  |
| b13: | -0.00002 | b14: | -0.46484    | b15: | 0.00000  |
| b16: | -0.00000 | b17: | -0.00000    | b18: | 0.00550  |

## Outer layer block leans on a wedge

#### Looks good mechanically

Ramesh Gupta

Progress in Q2pF End Design

20

40

60

100

80

120

140

160

## **Peak Field and Margin in Q2pF Cross-section**







Ramesh Gupta

# Field and Peak Field in X-section for Mirror Iron (to save time in 3-d calculations while comparing with 2-d fields)



|B| (T)



| MAIN FIELD (T)               | 3.438369 |
|------------------------------|----------|
| MAGNET STRENGTH (T/(m^(n-1)) | 41.4261  |



Ramesh Gupta

Peak Field for actual iron: 6.3 T

## End Design #1 (70 degree)

e/gupta/EIC/Q2pF/2023/Nov2023/Q2pF3D-Nov2023-a1harmz2.data] —



Preview [/home/gupta/EIC/Q2pF/2023/Nov2023/Q2pF3D-Nov2023-a1harmz2.data]

3Z Section 1g: None Bare







Ramesh Gupta

## End Design #1

e/gupta/EIC/Q2pF/2023/Nov2023/Q2pF3D-Nov2023-a1harmz2.data] —



### **Reasonable start:**

- Field harmonics: not too large
- Peak field: 6.95 T (Vs 6.85T in 2-d)
- Tilt Angle 70 degree
  About ~1.9% higher peak field

#### than that in x-section

Brookhaven National Laboratory Magnet Division

Ramesh Gupta

Progress in Q2pF End Design

| MARGIN CALC (USING JC-FIT):            |            |
|----------------------------------------|------------|
| BLOCK NUMBER                           | 11         |
| PEAK FIELD IN CONDUCTOR 69 (T)         | 6.9503     |
| CURRENT IN CONDUCTOR 69 (A)            | -8500.0000 |
| SUPERCONDUCTOR CURRENT DENSITY (A/MM2) | -886.0233  |
| PERCENTAGE ON THE LOAD LINE            | 66.0740    |
| QUENCHFIELD (T)                        | 10.5189    |
| TEMPERATURE MARGIN TO QUENCH (K)       | 3.1389     |
| PERCENTAGE OF SHORT SAMPLE CURRENT     | 26.8483    |
|                                        |            |

#### FORCES (N) IN COIL ENDS

| CONDUC | TOR FX    | FY         | FZ       | FPAR    | FPER      |
|--------|-----------|------------|----------|---------|-----------|
| 69     | 49479.701 | -68505.087 | 1372.501 | 100.339 | 85229.112 |
| SUMM   | 49479.701 | -68505.087 | 1372.501 | 100.339 | 85229.112 |

| HARMONIC ANALYSIS NUMBER                              | 1          |
|-------------------------------------------------------|------------|
| MAIN HARMONIC                                         | 2          |
| REFERENCE RADIUS (mm)                                 | 83.0000    |
| X-POSITION OF THE HARMONIC COIL (MM)                  | 0.0000     |
| Y-POSITION OF THE HARMONIC COIL (MM)                  | 0.0000     |
| NUMBER OF ANALYSES ALONG Z                            | 500        |
| LENGTH OF VIRTUAL COIL (MM)                           | 2500.0000  |
| REFERENCE POSITION NUMBER                             | 10         |
| MEASUREMENT TYPE ALL FIELD CON                        | TRIBUTIONS |
| ERROR OF HARMONIC ANALYSIS OF Br                      | 0.5231E-04 |
| <pre>SUM (Br(p) - SUM (An cos(np) + Bn sin(np))</pre> |            |

| 3D REFERENCE MAIN FIELD (T)            | 3.4387    |
|----------------------------------------|-----------|
| REFERENCE MAGNET STRENGTH (T/(m^(n-1)) | 41.4295   |
| MAGNETIC LENGTH (mm)                   | 1725.4061 |

| NORMAL | 3D INTEGRAL | RELATI | VE MULTIPOLE | S (1.D-4 | ):       |
|--------|-------------|--------|--------------|----------|----------|
| b 1:   | 0.00000     | b 2:   | 10000.00000  | b 3:     | -0.00000 |
| b 4:   | -0.00000    | b 5:   | 0.00000      | b 6:     | 0.12018  |
| b 7:   | 0.00000     | b 8:   | -0.00000     | b 9:     | 0.00000  |
| b10:   | -0.64588    | b11:   | 0.00000      | b12:     | 0.00000  |
| b13:   | -0.00000    | b14:   | -0.42942     | b15:     | -0.00000 |
| b16:   | -0.00000    | b17:   | 0.00000      | b18:     | 0.00205  |



**Magnet Division** 

Ramesh Gupta

Progress in Q2pF End Design

## End Design #2

me/gupta/EIC/Q2pF/2023/Nov2023/Q2pF3D-Nov2023-a1harmz1.data] – 🛛 🗆



### **Reasonable start:**

- Field harmonics: not too large
- Peak field: 6.952T (Vs 6.85T in 2-d)
- Tilt Angle 70 degree

About ~1.9% higher peak field than that in x-section; about the same as in the previous design.



Ramesh Gupta

Progress in Q2pF End Design

| MARGIN CALC (USING JC-FIT):            |            |
|----------------------------------------|------------|
| BLOCK NUMBER                           | 11         |
| PEAK FIELD IN CONDUCTOR 69 (T)         | 6.9518     |
| CURRENT IN CONDUCTOR 69 (A)            | -8500.0000 |
| SUPERCONDUCTOR CURRENT DENSITY (A/MM2) | -886.0233  |
| PERCENTAGE ON THE LOAD LINE            | 66.0855    |
| QUENCHFIELD (T)                        | 10.5194    |
| TEMPERATURE MARGIN TO QUENCH (K)       | 3.1381     |
| PERCENTAGE OF SHORT SAMPLE CURRENT     | 26.8566    |

#### FORCES (N) IN COIL ENDS

| CONDUC | TOR FX    | FY         | FZ       | FPAR    | FPER      |
|--------|-----------|------------|----------|---------|-----------|
| 69     | 49480.650 | -68506.113 | 1374.552 | 100.122 | 85231.765 |
| SUMM   | 49480.650 | -68506.113 | 1374.552 | 100.122 | 85231.765 |

| HARMONIC ANALYSIS NUMBER                   | 1           |
|--------------------------------------------|-------------|
| MAIN HARMONIC                              | 2           |
| REFERENCE RADIUS (MM)                      | 83.0000     |
| X-POSITION OF THE HARMONIC COIL (mm)       | 0.0000      |
| Y-POSITION OF THE HARMONIC COIL (mm)       | 0.0000      |
| NUMBER OF ANALYSES ALONG Z                 | 500         |
| LENGTH OF VIRTUAL COIL (MM)                | 2500.0000   |
| REFERENCE POSITION NUMBER                  | 10          |
| MEASUREMENT TYPEALL FIELD CON              | NTRIBUTIONS |
| ERROR OF HARMONIC ANALYSIS OF Br           | 0.5231E-04  |
| SUM (Br(p) - SUM (An cos(np) + Bn sin(np)) |             |

| 3D REFERENCE MAIN FIELD (T)            | 3.4387    |
|----------------------------------------|-----------|
| REFERENCE MAGNET STRENGTH (T/(m^(n-1)) | 41.4295   |
| MAGNETIC LENGTH (mm)                   | 1725.8457 |

| - Q2pF | 3D-Nov2023-a | 1harmz1.c | output 99  | 9% L11068 | (Fundamenta) |
|--------|--------------|-----------|------------|-----------|--------------|
| b10:   | -0.64371     | b11:      | 0.00000    | b12:      | 0.00000      |
| b 7:   | -0.00000     | b 8:      | -0.00000   | b 9:      | -0.00000     |
| b 4:   | -0.00000     | b 5:      | 0.00000    | b 6:      | 0.13001      |
| b 1:   | 0.00000      | b 2: 10   | 0000.00000 | b 3:      | -0.00000     |
| NORMAL | 3D INTEGRAL  | RELATIVE  | MULTIPOLE  | S (1.D-4) | 1            |

November 7, 2023

10



Ramesh Gupta

**Magnet Division** 

Progress in Q2pF End Design

## End Design #3

ne/gupta/EIC/Q2pF/2023/Nov2023/Q2pF3D-Nov2023-a1harmz.data] –



### **Reasonable start:**

- Field harmonics: not too large
- Peak field: 6.977 T (Vs 6.85T in 2-d)
- Tilt Angle 70 degree

About ~1.9% higher peak field than that in x-section; 0.2% higher peak field than in the other design.



Ramesh Gupta

Progress in Q2pF End Design

| MARGIN CALC (USING JC-FIT):            |            |
|----------------------------------------|------------|
| BLOCK NUMBER                           | 11         |
| PEAK FIELD IN CONDUCTOR 69 (T)         | 6.9771     |
| CURRENT IN CONDUCTOR 69 (A)            | -8500.0000 |
| SUPERCONDUCTOR CURRENT DENSITY (A/MM2) | -886.0233  |
| PERCENTAGE ON THE LOAD LINE            | 66.2747    |
| QUENCHFIELD (T)                        | 10.5275    |
| TEMPERATURE MARGIN TO QUENCH (K)       | 3.1248     |
| PERCENTAGE OF SHORT SAMPLE CURRENT     | 26.9936    |
|                                        |            |

#### FORCES (N) IN COIL ENDS

| CONDUCTOR FX |           | CONDUCTOR FX |          | FY      | FZ        | FPAR | FPER |
|--------------|-----------|--------------|----------|---------|-----------|------|------|
| 69           | 49498.493 | -68518.152   | 1400.887 | 102.559 | 85268.624 |      |      |
| SUMM         | 49498.493 | -68518.152   | 1400.887 | 102.559 | 85268.624 |      |      |

| HARMON ] | C ANALYSIS   | NUMBER   |                 |                   |                     | 1           |
|----------|--------------|----------|-----------------|-------------------|---------------------|-------------|
| MAIN HA  | ARMONIC      |          |                 |                   |                     | 2           |
| REFEREN  | NCE RADIUS ( | mm)      |                 | • • • • • • • • • |                     | 83.0000     |
| -POSIT   | TION OF THE  | HARMONI  | C COIL (mm)     |                   |                     | 0.0000      |
| -POSIT   | TION OF THE  | HARMONI  | C COIL (mm)     |                   |                     | 0.0000      |
| UMBER    | OF ANALYSES  | ALONG    | Ζ               |                   |                     | 500         |
| ENGTH    | OF VIRTUAL   | COTL (m  | m)              |                   |                     | 2500.0000   |
| REFEREN  | CE POSTTION  | NUMBER   |                 |                   |                     | 16          |
| FASURE   | MENT TYPE    | HUNDEN   |                 | ALL               | ETELD CO            | NTRTBUTTONS |
| ERROR (  | F HARMONIC   | ANAL VST | S OF Br         | אבו               |                     | 0 5237E-04  |
|          |              | An cost  | DD) + BD sin    | (00))             |                     | 0.52571-0-  |
|          | (p) - 30H (  | All COS( | iip) + bii stii | (112))            |                     |             |
| BD REFE  | RENCE MAIN   | FIELD (  | т)              | <mark>.</mark>    | · · · · · · · · · · | 3.4387      |
| REFEREN  | CE MAGNET S  | TRENGTH  | (T/(m^(n-1)     | )                 |                     | 41.4295     |
| AGNET    | C LENGTH (M  | m)       |                 | · · · · · · · · · |                     | 1721.7836   |
|          |              | 1.50     |                 |                   |                     |             |
| ORMAL    | 3D INTEGRAL  | RELATI   | VE MULTIPOLE    | S (1.D-4          | 1):                 |             |
| 1:       | 0.00000      | b 2:     | 10000.00000     | b 3:              | -0.0000             | 0           |
| 4:       | -0.00000     | b 5:     | 0.00000         | b 6:              | -0.0305             | 3           |
| 7:       | -0.00000     | b 8:     | -0.00000        | b 9:              | 0.0000              | 0           |
| 010:     | -0.66259     | b11:     | 0.00000         | b12:              | 0.0000              | 0           |
| 013:     | -0.00000     | b14:     | -0.43020        | b15:              | -0.0000             | 0           |

02pF3D-Nov2023-a1harmz.output 99% L11102 (Fundamental)



- There is no large increase in the peak fields in the ends over the body (an important part of this exercise). It is only 2% above the 2-d peak. Overall peak enhancement (2-d or 3-d is ~21%).
- Field harmonics looks ok as a good starting point (<1 unit).
- Peak field and harmonics will be further optimized together with the turn layout based on the initial single turn winding trials.
- A 70-degree vertical tilt angle should be possible.



Ramesh Gupta