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Overview

* Progress in the Design
* Construction and Test Results
— Significant part of this presentation
* Design Studies and Possible Feedback
* Quench Protection
— Including measurements
e Status of Milestones & Major Accomplishments

* Summary
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Progress in Design
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Basic Magnetic Design of 2.5 MJ Demo Coil
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Magnetic Design Optimization

Spacers to reduce perpendicular component and stresses
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Mechanical Structure Consisting of Double Pancakes

(with internal support structure)

Splice between
inner and outer

Internal support structure
(split in two parts)

External support
structure not shown

This design requires
significant analysis and
engineering before we can
proceed with construction

Current (new) design is a two coils (inner and outer) each consisting of a

number of pancakes. We can proceed with inner coill constructiolr; Iacl)w. ﬁam
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Design of Q6 GO/NO GO Test

Part of the Q6 outer coll Current GO/NOGO Design:

_ 2 frm] Six double pancakes
Magnet axis ¥ (consisting of inner only)

Earlier design:
Two double pancake
(econsisting of inner + outer)
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Construction and Test Results
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Q4 GO/NOGO Milestone

* We take the motivation behind GO/NOGO milestone
(Successful test of a mini stack of coils at 77 K) seriously

e “Successful Test” means demonstration (not design) to
show that the magnet division has most if not all
technologies ready before starting the full construction

e Critical components of mini coil stack technology:
— Demonstration winding and other tooling with real coils
— Demonstration of splice joints (within coil and between coils)
— Demonstration of the capability of test facility
— Demonstration of the basic quench protection system

Brookhaven Science A NATIONAL LABORATORY
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New Coils Wound with Improved Winder
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Step 1 for Making Stack of Coils: Joints

» Joints are one of the most critical component of the magnet.
Magnet performance is often limited because of the joints.

For expediency, we carefully apply the technology in use in SMD.

Necessary steps:
1. Finalize geometry for both joints (in coil and between coils)

2. Either (a) make “in coil” joint straight and bend them in coil or (b)
make them bent while winding; (a) preferred if degradation is small

3. Check reproducibility
Most joint tests are performed at 77K. Determine 77K to 4K scaling
5. Prove mechanical robustness in a real coil test

Note: Above work is not part of the R&D for joint milestone. That
IS being carried out by AEM & will be incorporated later in the coll.

BROOKHEAVEN
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Two Types of Splices

Splice to join two single pancakes to
make a double pancake (diagonal
splice)

Brookhaven Science Associates A %
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éplice within a single pancake (lap joint)
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Determination of the Length of the “In Coil” Joint
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Above puts ~0.75 nQQ (@77 K) joint resistance as the limit of this technology

for the material (including 2G tape) used here.
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Bending Degradation of the Lap Joint

Question: Is there significant bending degradation of the joint made straight?

If not, then it will allow straight splicing fixture to be used which will simplify the
coil manufacturing and increase the efficiency.

Examined at R~11 cm — worst case as coll i.d. is 10 cm and joint will appear at
higher radius. <Sm——

40F- —=— (a) Straight ;
—&— (b) wound on a mandrel of OD 11.4 cm, I

] Good News:
| No degradation in

s | joint performance
= 25 ]
£ \ Slightly reduced (?)

| resistance is perhaps
1 due to increased

. | | { pressure?
0 50 100 150 200 250 300 350

Current (A)

Experimental condition I.(A) N Rj(nQ)

Straight sample 325.8 26.8 2.05%0.04
Wound on a mandrel with OD of 11.4 cm 3247 26.6 1.79+0.04
Unwound and secured on a straight sample 3245 26.3 1.82+0.03
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2.05 nQ and 2.15 nQ
@77 K.
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Reproducibility of Joints

Two 15 cm Lap Joints
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Relationship of Joint Resistance between 77 K and 4 K
|

Most measurements during this study were made at 77 K.
However, one test was also made at 4 K (in addition to 77 K).

This gives an approximate relationship between 77 K and 4 K.
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Construction and Test of 15t Series of Pancake Coils
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Construction and Test of Double Pancake Coils

 Two pancake coils are spliced joint with diagonal joint

« Copper sheets are placed on either side of double pancake coil

» Coil stack is placed in test fixture, with in-house HTS current leads

« Test coils have several voltage taps at this stage for detailed analysis
« A series of voltage taps are connected to study quench protection

Double pancake
coils in test fixture

BROOKHEVEN
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Critical Milestone Test Result

Q4 GO/NOGO Milestone: _ T T }
* Successful test at 77 K of a mini § 0.4 — bottom(77K J)
stack of coils T .l R 7S f
> Achieved (see on right) é s 77K
* Also tested at higher current, % o 63 K
obtained by reducing temperature g 0.1

by pumping on N,.

0-0 - T T T T T
0 50 100 150 200 250 30(
Current (A)

* Note: Definition for critical current in HTS wire
iIndustry is 1 uV/cm.

« For ~10 km (10° cm), this would allow 1V.
This means~650 W dissipation for ~650 A.

» We use a more stringent 0.1 uV/cm definition.

* 0.1 uwV/cm permits ~65 W maximum.

 This reduces to a maximum load of ~2 W for

a 32 channel quench protection system.
BROOKHRUVEN
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4 K Helium Tests of SMES Double Pancake Coils

* Important numbers: (a) ~100 A@77K (NO/NOGO milestone -
achieved), (b) 250+@63K (useful bonus demonstration), (c)
~650 A@4 K (project goal — still far from there).

* Important questions: (a) Will quench protection system be
able to protect the coils at ~650 A?, (b) Will coils be able to
survive guench at ~650 A?, (c), Are splice joints and other
construction techniques OK for ~650 A?, etc., etc., etc...

* To answer these questions before committing to a full scale
construction, we need a high current test - only possible
with Helium - not a part of the Q4 GO/NOGO milestone.

e Such atest increases the risk of a possible setback early on
but useful feedback reduces the risk to the project later on.

* We made a logical decision based on the technical merit
and decided to carry out this test.
BROOKHEVEN
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Conductor Test at 4 K

2000

y = 2899.1x70-663

Good magnets
can’'t be made
without good
conductor.

1500

1000
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H T

With new high current leads, BNL can measure I, of full width (12 mm)
conductor. We do not perform I. measurements as a function of angle.
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Upgrade of High Current Fixture for 4 K Test

'High current test required upgrade
of leads (>700 A), fixture, quench
protection set-up, etc. early on
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First 4 K Test Results of SMES Coils

0.5 -
€ .
o A top coil

04 |
z
~ ¢ bottom coil
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}% JAN
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et
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0 200 400 600 800 1000 1200
Bo: ~5.5T (design ~24 T) Current (A) Bperp: ~3.6 T (design ~6 T)

All systems (including quench protection and splice joint)

worked well till 1130* A (design current ~650 A)
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Observations about Conductor
from the 4 K Test Results

» Amount of copper stabilizer (~100 mm) seems to be OK.

» Test coils had many voltage taps for detailed diagnostics.
The entire wire (~¥55 meter in each coil) was good.

» The coil remained protected after repeated shut-off and
also up to 10 A/s ramp rate (design 1 A/s). No degradation
in wire performance observed.

» This was perhaps the highest current reached in a coil
made with SuperPower Wire.

» Good wire makes good coil. Thank you SuperPower.
T BROOKHRUEN
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Critical Current as a Function of Temperature
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(Operating current in demo device is ~650 A)
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Useful Ic Vs T
measurements,
performed
routinely at BNL
because of the
way coll assembly
and test setup is.

Important quench
protection tests at
~700 A while the
conductor is near
critical surface
(either increase
field or reduce
temperature)

BROOKHEVEN

NATIONAL LABORATORY

Ramesh Gupta & Piyush Joshi, Magnet Coil Design, Construction, Quench Protection &Test Results, 11/30/2011 SMES Project Proprietary Material 25



Critical Design Studies
and

Possible Feedback to Current Program

ATIOD
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Outer Coil Design

* Design field of outer coil is ~12 T. Such coil can be
made with convention LTS technology. In fact one can
order this now from a number of commercial vendors.

* Making it with HTS will be much more expensive.

* In an actual SMES device, the outer coll, therefore, Is
likely to be made with convention LTS. This is similar
to what we are doing in other high field magnets also.

* Moreover, making outer coil with HTS will require us
to address technical issues associated with large hoop
stresses in HTS coils due to larger coil radius.

* Question: Is it wise to spend significant resources in

- solving a major technical issue in a demo device

which will not be present in the actual system?

» We definitely have to address the issues associated
= with “high field HTS coils™ but not necessarily those

with “high radius HTS coils™ — not for SMES program.

NATIONAL LABORATORY
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After building

Possible Alternate/Future Plan

e 24-30 T HTS SEMS coil scenario can be integrated in the

present coil, make present R&D plan seamlessly thanks to an independent

second coil going

Inside rather than .
outside and

generate 24-30 T

Magnitude of the Field

Ratio of Current Densities

nnnnnnnnnnnn
1 1

1.25X

1.5X
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earlier design change which decoupled inner and outer coils.

One can test a set of 100 mm aperture coils to ~30 T field in
the background field of 20 T magnet at Florida (as suggested
by Drew Hazelton of SuperPower). Technically it doesn’t
matter where the background field comes from — other SMES
coil or somewhere else.

Proposed design is also likely to bring a major saving in SMES
device by reducing conductor cost up to ~60%. This is
significant as the conductor represent the majority of the cost
in the present design of high energy density SMES System.

Above proposal addresses all technical issues related to a
high field HTS SMES coil (stress, strain, quench protection,
etc.) while minimizing spending limited resources in solving
technical issues which may never be faced in a real device.

BROOKHEREVEN
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Quench Protection

Quench detection and protection is a major issue in HTS magnets

BROOKHREVEN
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Quench and data Logging system

* Verify the reliability of e b
quench detection system |7 S
* Verify the operation of wm e
Energy extraction system = f
 Expand quench and data v m
logging system to 32 | =&
channels. = ?i““w .
=0 =
oLt Crese] " — i S———— : f

TiStart | ® ookt | bousmwhn. | b RSWpRAs. b b crdmsdi,. | (o Betokdao.. | [Hosdoo-m..
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Quench Detection

"_L?Af‘?“n’ I .
e Threshold of 2mV during ramp for & | of i
ramp rate up to 10 A/s .
1V Gagh 2 EE

* Threshold of 1ImV (Q4 milestone)
was demonstrated during ramp
for ramp rate up to 1 A/s (current
design)

i
* Threshold of 0.7mV at constant gy
current (storage) demonstrated <
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Typical Behavior at Quench
ﬁorage (614A at 21K)
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1100A @ 4.2K
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Diff current at 4.2K
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Expansion of Quench system to 32
channel

32 Channel differential input, 16 bit simultaneous
sampling with variable gain and range.

Synchronization within 10usec for transient data
logging.

Channel to Channel isolation of 1000V (least delay)
Channel to ground isolation of 1000V.

DAQ to withstand at least 2000V for 15sec.
Software selectable channels for voltage bucking.

Variable threshold while ramping and steady state
and for different coil section combination



Two practice coils with
stainless steel tape have been
wound (one mini and one full
size inner).

Two full size coils (destined
- w | n for demo magnet) with 2G
| A i L — HTS have been wound.

19
T ~ /
T E '

Rota!ing (now)
Fixed (earlier)

= -
‘ —

A

,‘ Simplification of coil winder
is making better quality coils
SCCNe e at a faster rate — just what we

Revolving (earlier) wanted and expected.
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Winder Upgrade

TENSION
N %

Two independent
Tension controllers

Automated Controls
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Status of Q4 Magnet Division Milestones

1. Milestone: Small scale test coils fabricated and tested to determine  Test Completed

mechanical properties of the conductor that can be used in the design  for 4K-77K (original
goal was for 77 K only)

2. Milestone: Demonstrate a cross-section section design with Completed
deflection < 200 micron (last review)

3. Milestone: Magnet design complete to produce coil with 2.5 MJ Completed

stored energy

(last review)

4. Milestone: Tooling Design Completed

We have completed all Q4 milestones
» In addition by testing coil at 4 K (in addition to at 77 K), we
obtained useful information, etc. that reduces risk in future

0 Magnet Division does not have any Q5 milestone and is on track to
Q6 GO/NOGO milestone subjected to inflow of funds
BROOKHRUVEN
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Major Accomplishments

* Coil technology is demonstrated to well beyond the Q4 milestone:
— Tests performed to 4 K (milestone required only 77 K)
— Coils tested to 1140 A (design required only ~650 A)

e Basic quench protection is demonstrated in detecting small
resistive voltage in presence of large noise and in protecting coil
well beyond the design current

* The basic joint technology is successfully applied to real coils. Joint
construction has been found robust in high current 4 K tests. Joint
with a resistance of <1 nQ built and tested (specification <5 nQ )

:r R JLL HHE«WEN
Brookhaven Science Ass NATIONA]

Ramesh Gupta & Plyush Joshl Magnet Coil Design, Construction, Quench Protection &Test Results, 11/30/2011 SMES Project Proprletary Materlal 41




Remaining Magnet Division Tasks

 Complete detailed engineering design

 Complete construction of advanced quench protection hardware
with 32 channels (significant work based on the basic system

that was demonstrated in this quarter for two coils)
* Start series production of remaining coils
* Do 77 K QA test of each double pancake coil

e Construct and test 10 T magnet for Q6 GO/NO GO milestone

with intermediate support structure

* Construct 24 T magnet with advanced support structure

Ramesh Gupta, I\/Iagnet Coil Design, BROOKHEVEN

Brookhaven Science Associates onstructi ults NATIONAL LABOKATORY
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SUMMARY

* First GO/NOGO milestone has been successfully completed.

* With basic technology (coil winding, splice joint, quench protection,
etc.) demonstrated, we are moving to a series production of coil.

* Important iteration in the design of demo is proposed so that we
apply our limited resources in solving those issues that will be
relevant in the GRID scale device.

 We are pleased with the progress made so far, but are mindful of
the number of challenges ahead.

Brookhaven Science Associates NATIONAL LABORATORY
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MECHANICAL DEFORMATION
IN SS STRUCTURE

Maximum deformation- 104 pum

Note: HTS coils are not shown

Ramesh Gupta & Piyush Joshi, Magnet Coil Design, Construction, Quench Protectio
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MECHANICAL DEFORMATION |[Ehaa
IN HTS COILS

1
NODAL SOLUTICN
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Maximum deformation- 171 um

Note: SS structure is not shown

Max: 148 pm
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STRESS and STRAIN WITHIN HTS COILS

EQUIVALENT STRESS IN HTS COILS EQUIVALENT STRAIN IN HTS COILS

Max: 0.27%

Max: 353 MPa

)3 001308 .001863 .002417
3 11585 )14 )
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Expected Values of Joint Resistances

Diagonal splice between two pancakes (6.2 cm long chosen):
» ~6 NQ@77K and ~4.5 nQ@4K
» This will disappear if we wind colls as double pancake

Internal splice within pancake (15 cm long chosen):
» ~2nQ@77K and ~1.5 nQ@4K
» This will disappear as long length conductor become available

Field dependence of joint is expected to be measured by AEM

Best splice joint (may be used to join two double pancakes):
» <1 nQ@77K and =% nQ@4K
» This can’t be avoided but < 1 nQ is perhaps the best achieved

v All of above are below the project milestone of 5 nQ.
v Contribution to losses from these joints should be relatively small.

BRDOKHRHEN
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SMES Coil Design for GRID
Guiding Principles
Conductor is the cost driver in the high field HTS SMES. In fact, in the

present design, the conductor cost determines the cost of the SMES caoil.

Therefore, minimizing this must be the major goal of this R&D.

Demo model should be as much in sync with the likely SMES system for
GRID as possible/practical. At minimum, we should not spend major

resources in solving/optimizing something that is specific only to demo.

_— i3 RKD EH@?«WEN
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Field on Conductor in 2 Layer Coil of 2 GJ System

~ B-perpendicular, 0.4 T max

Middle
= of the pack

Magnitude of B (24 T max)

(NOT 6-10 T)

—

~ Lower perpendicular field effectively
increases |, and reduces losses.

Higher I, => less conductor => reduced system cost

» B, (inner coil): ~24 T
» B, (outer coil): ~11 T

At 12 T, HTS is order of magnitude more expensive in kA.meter than LTS (Nb5Sn).

UIs HTS the right choice of conductor for outer?
O Since outer coil uses twice as much conductor as inner, the impact is even more

dramatic. BRO BUEN
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Field on the Coil

Field displayed only on outer
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Possible Scenario
Longer Length and Insert Coils

Z [mm] e
 What if we use the same amount of
conductor and make (a) demo device
longer and (b) make second coil with
smaller radius to go as insert instead
of making with larger radius to go as
outsert?

MODEL DATA
QO-\operalarpa-einov20
11\arpa-e-ta-equal-j.st

uadratic elements

* Weget225T
... close but not 24 T that we promised

Asi-symmetry
R™ tial
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26751 elements
53958 nodes
29 regions.

100.0

50.0

%80 10,0 200 300 400 50.0 600 70.0 80.0 90.0 100.0
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Conductor Choices

Current Density Across Entire Cross-Section
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HTS must be used in high field regions. But cheaper NbTi/Nb;Sn become
more attractive in low field regions. BROOKHRUEN
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* Considering grading: means use higher
current density where the field is low or
more parallel, i.e. where the conductor is
under-utilized (without grading ~22.5T).

* Grading increases the field (hence stored
energy) while reducing the amount of

conductor (hence cost) requ

Current Density Across Entire Cross-Section

Possible Scenario
Grading to Make SMES Demo Coils with Fieldupto 30T

Magnitude of the Field
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Parameters and Field in GO/NOGO COIL at 1140 A

Surface contours: BMOD
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Coil Parameters:

* Coil i.d./o.d. = 100/153 mm

e Coil width = ~26 mm
 Number of turns = 250

* Length of HTS wire used=~110 m
e Conductor thickness = ~165 micron

* Insulation (SS) thickness = ~50 micron

Surface contours: SQRT(BX*BX+BY*BY)
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