Q2PF EIC IR SC Magnet design Status

Ramesh Gupta, Michael Anerella, John Cozzolino, Jesse Schmalzle, Holger Witte, Sara Notaro, James Rochford...

February 07, 2024

Electron-Ion Collider

ENERGY Office of Science

EIC IR Quadrupole Q2pF

Requirements section

Requirements check list	Y/N/?
Are all the requirements needed to start the design process in place.	Y
Are the requirements understood.	Y
Has the L2(or deputy) reviewed the requirements and approved them.	?

Q2pF Design Status

Feb 7, 2024

Magnet Requirements

Magnet requirements		
The lattice version used to generate the requirements is	EIC-HSR-230421a Colliding	
The name of unique magnet is	Q2PF	
The number of magnets required are	1	
Additional notes	SC QUAD Q2PF	
The magnet design proposal is	New	(N,REU,REW)
The number of magnet functions shall be	1	
The field type shall be	Qu	(Di,Qu,Sx,Oc,De,Do,Sol,Ki,Hk,Vk)
The field direction shall be	na	(V,H,Z)
The field rotation shall be	No	(Norm, Skew)
The min coil inner rad shall be	113\-	m
The min gap shall be	na	m
The good field aperture drx required shall be	68.69	m
The good field aperture dry required shall be	17.69	m
The mag length shall be	<3.8	m
The slot length shall be	3.80	m
Field Reqs		
The dipole field B shall be	na	na
The grad field G shall be	39.74	T/m
The ramp rate shall be	na	T/s
The field stability shall be	TBD	T/s
Max multipole content		
The harmonic reference Radius and current shall be	Ir=TBD[A]\Rr=16[mm]	(mm,A)
The Field at the reference radius and current shall be	Bref=TBD	(T)
Oth order of	na	(10^-4)
1st order of		(10^-4)
2nd order of	10000	(10^-4)
3rd order of	<1	(10^-4)
4th order of	<1	(10^-4)
5th order of	<1	(10^-4)
6th order of	<1	(10^-4)
7th order of	<1	(10^-4)
8th order of	<1	(10^-4)
9th order of	<1	(10^-4)
10th order of	<1	(10^-4)
11th order of	<1	(10^-4)
12th order of	<1	(10^-4)
13th order of	<1	(10^-4)
14th order of	<1	(10^-4)
15th order of	<1	(10^-4)
16th order of	<1	(100-4)

Notes

Data through Jim Rochford from EIC SharePoint IR magnet folder

Max X talk multipole content		
The magnet shall be designed to limit Xtalk	Ν	
Requirements		(Y\N)
The xtalk shall be constrained as described ;	TBD	
The radial distance to X-talk location content	TBD	
shall be		mm
The Xtalk harmonic reference Radius and	TBD	(mm,
current shall be		A)
Oth order of	TBD	Т
1st order of	TBD	Т
2nd order of	TBD	Т
3rd order of	TBD	Т
4th order of	TBD	Т
5th order of	TBD	Т
6th order of	TBD	Т
7th order of	TBD	Т
8th order of	TBD	Т
9th order of	TBD	Т
10th order of	TBD	Т
11th order of	TBD	Т
12th order of	TBD	Т
13th order of	TBD	Т
14th order of	TBD	Т
15th order of	TBD	Т
16th order of	TBD	Т
Fringe field constraints		
The magnet design shall constrain the ext.	TBD	
fringe field		(Y∖N)
The magnet shall be designed to meet the	TBD	
following fringe field requirments		

Electron-Ion Collider

Q2pF Design Status

Feb 7, 2024

Preliminary EM design

Comments/Questions:

- 1. Need to define and understand the difference between the preliminary design and the detailed design (next section)?
- 2. What is included in the preliminary and what in the detailed?

Electron-Ion Collider

3. Should a preliminary design morph into a detailed design?

Q2pF Design Status

Feb 7, 2024

Preliminary EM design Section

Conceptual EM model check list						
Has an optimized 2D cross section been generated (collared mags only)						
Has the final 2d section been cross checked in a separate code (Roxie\VF\COMSOL, etc.)	Y(a)					
Are the 2D model conductor properties different from the proposed production conductor.	Ν					
Are the Iron properties assumed consistent with the proposed production Iron?	?					
Is the conductor temperature assumed consistent with the proposed temperature needed.	Y					
Are the Bore field and Harmonics consistent with requirements at all operating currents.	Y (2d)					
Are the cross-talk requirements met for all operating currents						
Are all the operating parameters (Bore field, Peak field, Stored energy, lop, Jop, Operating margin, Inductance, etc) such that the magnet can reliably meet the requirements	Y					
Has the magnet design information been recorded in the magnet spec in the requirements folder	N(c)					
Are there issues with the analysis that you are concerned with	?					
Y(a): Yes, but not the latest						
Y (b): Yes, but not fully checked/optimized for the latest 2-d and 3-d						
N (c): Latest design to be uploaded after the consistency check						
Q2pF Design Status Feb 7, 2024 Électron-Ion Collic	ler .					

LHC Style Cable used in Quad & Dipole (based on full keystone for Q2pF and B1ApF)

	E Cabl	le Geometry	y										
	No	Nane	height	t wie	ith_i	width_o	ns	transp.	degrd Connent	8			
TIO		EICLHCB	15.	1 :	1.816	1.984	28	115	5 LHC IN KEYSTOE FOR EIC DIPOLE				
	1	EICLHCQ	15.	1	1.79	2,01	28	115	5 LHC IN KEYSTONE FOR EICIR QUAD	Keust	one angle for cab	le width cc c	oil readius
	1	EICLHC01	15.	1 :	1,786	2,014	28	115	5 LHC CABLE KEYSTOR FOR EIC 4,2K	Neysu	one angle for cap	c width << c	Onreadius
,	2	EIC3642	19.	4	1.773	2.027	36	115	3 EIC 36 STRAND 04.2K			Q2pF	B1ApF
	3	EIC3618	19,	4	1,773	2,027	36	115	3 EIC 36 STRAND 01,8K	Cable	height	15.1	15.1
	4	EIC3642A	19.	4 :	1.788	2.012	36	115	3 EIC 36 STRAND 04.2K 2 Layers	Cable	mid-thickness	19	19
	5	CABLE01	15.	1	1,736	2,064	28	115	5 MB INNER LAYER, STR01	CODIC.	1110-0110811035	-	
	6	CABLE02	15.	1	1.362	1.598	36	100	5 MB OUTER LAYER, STR01	Insul (one side)	0.12	0.12
	7	SINGLE	0,9	4	0.94	0,94	1	0	O SINGLE STRAND	Coil i.r	r	140	185
	8	GSI1CAB	9.7	4	1,061	1.271	30	74	0 GSI001 (RHIC) CABLE				
	9	GSI001	9.7	3	1.111	1.321	30	74	0 GSI001 following Wanderer				
	10	20MMCABLE	2	0	1,736	2,172	37	0	0 20mm cable				
	11	20MMCBNDK	2	0	13.8	13.8	290	0	0 7x20mm cable, no keystone	Avg Ra	ad	147.55	192.55
	12	20MMCAB2	2	0	1.8	2	37	0	0 20 mm cable 2	dt		0.2190	0.1678
										Width	1	1 790	1 816
	E Cabl	le Definit	ion							width	0	2.010	1.984
	No	Nane	Cable Geom.	Strand	Filament	Insul	Trans	Quench Mat.	T_o Connent				
FIC		EICLHCB2K	EICLHCB	STREIC1	NBTII	ALLPOLYI	TRANS1	NONE	2 LHC INNER FOR EIC IR QUA	0.92	Note: Ke	vetone	s are
	2	E ICLHCQ2K	EICLHCQ	STREIC1	NBTII	ALLPOLYD	TRANS1	NONE	2 LHC INNER FOR EIC IR DIP	OLE 6	Hote. Ne	ystone.	sare
	.3	LHCIN42K	EICLHC01	STREIC1	NBTII	ALLPOLYI	TRANS1	NONE	4,2 LHC INNER FOR EIC 04,2K		reduce	ed for E	IC
LHC 💳	Marer	YELLONIN	CABLE01	STR01	NBTII	ALLPOLYI	TRANS1	NONE	1.9 V6-1 DESIGN DIPOLE INNER	1			
	Juater	YELLONOU	CABLE02	STR02	NBTID	ALLPOLYO	TRANS1	NONE	1.9 V6-1 DESIGN DIPOLE OUTER	£			
		OTHER DO	OTHER F.	ALCONO.		10.00 T 10.1	for some some	S and an					

- Q2pF cross-section designs with both cables examined.
- EICLHCQ2K cable has perfect keystone for Q2pF and is chosen here.
- Both cables are similar to the one used in LHC dipole inner layer, except for the keystone (choice made early on for easier availability)

Q2pF Design Status Fel

Feb 7, 2024

Q2pF Major EM Design Parameters (preliminary)

Magnet Name	Q2pF (old)	Q2pF(12/20/2023)	for EIC IR	Superconductor	NbTi	
(Original table created by Ramesh Gupta on 11/9/2022)				Cu/Sc Ratio (nominal)	1.6	
				strand diameter (mm)	1.065	
Magnet type	Quadrupole			Number of strands in cable	28	
Coil inner diameter	280		mm	Cable width, bare (mm)	15.1	mm
Coil outer diameter	342.8		mm	Cable mid-thickness, bare (mm)	1.9	mm
Number of lavers	542.0 Two			Cable insulation radial	0.15	mm
lute meted and direct Oderian	100		T	Cable insulation azimuthal	0.12	mm
Integrated gradient @design	133.55		1	Cable width insulated	15.4	mm
Design gradient (@center of magnet)	38.22		T/m	Cable mid-thickness insulated	2 14	mm
Operating current @ design gradient	8500	8570	А		2.17	
Magnetic length	3.494		meter	()perating temperature (pominal)	2	ĸ
Coil length (last turn to last turn)	3.64		meter	Stored energy @design gradient	27	MI
Yoke length	3.72		meter	Inductance	75	mH
Total number of turns per coil	70	69	per octant	indecanec	75	
Number of turns in inner layer	34	35	per octant	Quech current	13700	A
Number of turns in outer layer	36	34	per octant	Quench gradient (@center, @13.7kA)	58.3	T/m
Cable required (whole magnet)	2		km	Peak field @design	6.4	T

Q2pF Design Status

Feb 7, 2024

Q2pF Coil Cross-section

Main Features:

- Two layers, 69 turns
- Only one wedge in each layer
- Symmetric wedges
- Poles of Outer and Inner aligned

0

 Significant midplane gap for tuning allowed and some non-allowed harmonics (RHIC and SSC experience)

20

40

Q2pF Design Status

60

80

100

Feb 7, 2024

120

140

Electron-Ion Collider

160

180

Coil Cross-section Details (ROXIE input)

ype	NCab	R	•	a	Current	Cable name
os 💌	31	140	0.54	0	-8500	EICLHCQ2K
os 🔻	4	140	31.179	25,196	-8500	EICLHCQ2K
os 🔻	21	156	0.54	0	-8500	EICLHCQ2K
os 🔻	13	156	17	30	-8500	EICLHCQ2K
	ype os ▼ os ▼ os ▼ os ▼	ype NCab os ▼ 31 os ▼ 4 os ▼ 21 os ▼ 13	NCab R os ✓ 31 140 os ✓ 4 140 os ✓ 21 156 os ✓ 13 156	NCab R # os Image: Straight of Straight	NCab R ¢ c os 31 140 0.54 0 os 4 140 31.179 25.196 os 21 156 0.54 0 os 13 156 17 30	NCab R # at Current os 31 140 0.54 0 -8500 os 4 140 31.179 25.196 -8500 os 21 156 0.54 0 -8500 os 13 156 17 30 -8500

35 turns in inner and 34 in outer Symmetric wedges

No	X1	Xu	Xs String	Act Block
1	3	9	6,44 PHIRS	2 🔻 2
2	6	12	10,34 PHIRS	2 🔻 4
3	0	0	0 ALPHRS	2 🔻 2
4	0	0	0 ALPHRS	2 🕶 4

Q2pF Design Status

Feb 7, 2024

Peak Field and Margin

Field at coil midplane: 38.22 X 0.14 = 5.35 T Peak field Enhancement: 18% (max field over the midplane field)

Margin on Load-line: 38% Conventional definition: 56% (short sample over design)

Q2pF Design Status

Feb 7, 2024

Quench Margins

Field margins in various blocks

Temperature margins in various blocks

Field Harmonics at the Design Field

HARMONIC ANALYSIS NUMBER	1
MAIN HARMONIC	2
REFERENCE RADIUS (mm)	83.0000
X-POSITION OF THE HARMONIC COIL (mm)	0.0000
Y-POSITION OF THE HARMONIC COIL (mm)	0.0000
MEASUREMENT TYPE ALL FIELD CONT	TRIBUTIONS
ERROR OF HARMONIC ANALYSIS OF Br	0.6776E-04
SUM (Br(p) - SUM (An cos(np) + Bn sin(np))	

MAIN	FIELD (T)				 	 	 3.147502
MAGNE	T STRENGT	'Н (Т/	(m^ (n	-1))	 	 	 37.9217

NORMAL RELATIVE MULTIPOLES (1.D-4):

b 1:	-0.14254	b 2:	10000.00000	b 3:	0.00250
b 4:	-0.01577	b 5:	0.02641	b 6:	-0.10295
b 7:	-0.00201	b 8:	-0.00094	b 9:	0.00065
b10:	-0.40774	b11:	-0.00011	b12:	0.00000
b13:	-0.00002	b14:	-0.46484	b15:	0.00000
b16:	-0.00000	b17:	-0.00000	b18:	0.00550

All harmonics < 1 unit

Q2pF Design Status

Feb 7, 2024

EM Yoke Design

Challenges in yoke magnetic design

- Non-linear yoke saturation.
 - Holes have been efficiently used in RHIC and follow-on magnetic designs to control saturation.
 However, in EIC IR magnets large holes or cutout (B1pF) are required too close to the yoke inner surface, which could create major problems.
- Field in the hole for the passage of electron beam

Q2pF Design Status

Feb 7, 2024

EM Yoke Optimization (1)

Holes for Tie Rods – Turning them in to an opportunity

• Strategy: Large holes for tie rods clearly make a significant impact on iron saturation. Let's try to make use of those large holes as a tool of opportunity!

EM Yoke Optimization (2)

Tie Rods to Reduce Saturation-induced Harmonics

EM Yoke Optimization (3)

Optimized tie rod holes can divert field away from the electron beam hole

Evaluation of the impact of the fringe field on the electron beam from the nearby hadron magnets

- Current approach is to make the fringe field below the earth's magnet field.
- Shouldn't this be evaluated as the harmonic errors?
- Otherwise, we may be putting unnecessarily stringent requirements on the magnets and infrastructure cost.
- Suggestion: Study the beam dynamics impact of the computed error harmonics on the electron beam from the excitation of the nearby hadron magnet.

Q2pF Design Status

Feb 7, 2024

Cross-talk in the current design of Q2pF

X-talk for e-beam (harmonics are in Tesla.unit, not normalized)

X-talk for hadron beam (harmonics normalized to quad field)

Q2pF Design Status

Feb 7, 2024

Allowed harmonics in the current design

- b6 has gone slightly above 1 unit, perhaps due to some update in the yoke X-section.
- Will be brought down to less than 1 unit in the next iteration

Q2pF Design Status

-0.25

-0.5

2000

Feb 7, 2024

4000

b 10.

8000

6000

Current (A)

Electron-Ion Collider

10000

12000

b 14.

Calculation of Peak Field with OPERA3d (non-linear iron)

Integration method for the coil field to assure a reasonable accuracy

Field Harmonics Along the Axis from OPERA3d at 8.5 kA (R=100 mm)

Q2pF Design Status

Feb 7, 2024

Coil End Winding Approach

- These magnets are much larger in aperture than any high field NbTi accelerator magnets ever built
- Therefore, the empirical criterion used in previous magnets may not be valid for winding the coil ends
- To overcome this uncertainty, a short cut experimental approach was devised. In this approach a single turn cable winding test will be carried out to determine the basis or figure of merit of optimization.
- Full winding is too expensive and would take too long.
- Cable from CERN was requested (same width but a slightly different stone). CERN delivered that cable early on.

Q2pF Design Status

Feb 7, 2024

Strategy for Q2pF

- The exercise of using CERN cable in single turn winding test has been very useful.
- This basically meant that the ROXIE criterion (developed for small aperture magnet) has to be updated so much so that they can't be used as such.
- Based on that, we completely ignored that path and determine the shape based on the single turn winding.

Q2pF Design Status

Feb 7, 2024

• This approach makes particularly more sense for Q2pF as we have significantly more time in the case of Q2pF.

Coil Ends (latest design of Return End)

From Jesse (Via Sara and Holger)

Coil Lead End Inner Layer (latest design)

Coil Lead End Outer Layer (latest design)

Q2pF Design Status

Feb 7, 2024

Preliminary EM design Summary

Magnet design information	Func 1		
The magnet design info from	Hyperlink		
The magnet design intent is	New		
The magnet model name is	Q2PF		
The number of magnets required is	1		
General Magnet Spec			
Bagnetic length =	TBD	(m)	
Bore tube outer-dia =	TBD	(mm)	
		(T),(T/m),(T/	
Bore field (B or G) =	TBD	m2)	
Field internal	TRO	(T.m),(T),(T/	
Field Integral =	TBD	m) (mm)	
Con aperture in or pole gap =	TBD	(1111)	
Ramp rate =	TBD	(1/5)	
Operating temperature =	TBD	(N) (Aturne)	
Total number of num laware	TRD	(Acurns)	
Total number of num Layers =	TBD		
Layer function =	TRD		
Number of turns per polo	TRD		
Number of turns per pole -	TBD	(A)	
Current =	TRD	(A) (U)	
Stored operation	TBD	(11)	
Stored energy =	TRD	(IVIJ)	
Engineering current density -	TBD	(1101111) (A/mm2)	
Engineering current density =	TRD	(A/IIIIIZ)	
Power dissipation -	TBD	(W) (T)	
Peak neid in winding -	TBD	(1)	
Analysis radius R _A Analysis current I _A =	IBD	(mm) (A)	
Field at I _A and R _A =	TBD	(T)	
Design harmonics allowed multipoles =	TBD	(10-4)	
Design harmonics nonallowed multipoles =	TBD	(10-4)	
Xtalk and fringe fields			
		(mm,mm,m	
Xtalk Location (x,y,z) =	TBD	m)	
Xtalk analysis radius R _A , Analysis current I _A =	TBD	(mm) (A)	
Xtalk Field at I _A and R _A =	TBD	(T)	
Xtalk harmonics multipoles =	TBD	(10-4)	
Location of Fringe filed R or Location (x,y,z) =	TBD	(mm)	
Value of fringe field at target location =	TBD	(T)	
SC Cables. Strand's =		Ľ	
Superconductor type used =	TBD		
Conductor\cable used =	TBD		
Cu:Sc ratio =	TBD		
Critical field of wire =	TBD	(T)	
Xsectional area of wire -	TRD	(mm2)	
Critical current of wire -	TRD	(A)	
Critical temperature -	TRD		
Critical temperature =	TRD	0/	
operating margin =	IBU	10	

Issues & outstanding work needed

Add here as needed

Magnet heat load\Cooling			
Operational temp of magnet =	TBD	(K)	
Max operational temp of magnet =	TBD	(K)	
Nominal operating heat loads =	TBD	(W)	
Peak quench heat loads =	TBD	(W)	
Peak quench heat load duration =	TBD	(s)	
Coils			
Coil width in X (od or dx) =	TBD	(m)	
Coil height (od or dy) =	TBD	(m)	
Coil length dz =	TBD	(m)	
Mass of coils =	TBD	(Kg)	
Iron collar\Yoke			
		(Cold,Warm	
Iron temp=	Cold	<u> </u>	
Iron extent (od or dx) =	TBD	(m)	
Iron extent (od or dy) =	TBD	(m)	
Iron length dz =	TBD	(m)	
Yoke mass =	TBD	(Kg)	
Cold Mass			
Cold mass extent (od or dx) =	TBD	(m)	
Cold mass extent (od or dy) =	TBD	(m)	
Cold mass length dz =	TBD	(m)	
Coldmass mass =	TBD	(Kg)	
Fully Assembled insertion			
Complete magnet width dx =	TBD	(m)	
Complete magnet height =	TBD	(m)	
Complete magnet length dz =	TBD	(m)	
Full assembly mass =	TBD	(Kg)	

Q2pF Design Status

Feb 7, 2024

Detailed EM design

Q2pF Design Status

Feb 7, 2024

Detailed EM design Section (still being iterated)

Detailed EM model check list	Y/N/?		
Has an optimized 3D model been generated to include the effect of end turn spacing.			
In winding terms is the 3D coil geometry considered realistic.			
Is the 3D model output consistent with the 2D model output.			
Are the 3D model conductor properties different from the proposed production conductor.			
Are the Iron properties assumed consistent with the proposed production Iron.			
Is the conductor temperature assumed consistent with the proposed operating temperatures.			
Are the Integrated Bore field Harmonics consistent with requirements at all energies/field configurations.			
Are the cross-talk requirements met for all all energies/field configurations.	Y *		
Are the fringe field requirements met for all all energies/field configurations.			
Are the more accurate estimates (Peak field, Inductance, integrated harmonics etc) added to the Magnet spec sheet.			
Y*: Yes, based on the 2-d models; needs to verified with 3-d model			

Qzpr Design Status

TED 7, 2024

Detailed EM design Summary

Magnet design information	Func 1		•
The magnet design info from	<u>Hyperlink</u>		
The magnet design intent is	New		
The magnet model name is	Q2PF		
The number of magnets required is	1		
General Magnet Spec			
Bagnetic length =	TBD	(m)	
Bore tube outer-dia =	TBD	(mm)	
		(T),(T/m),(T/	
Bore field (B or G) =	TBD	m2)	
Field integral	TRD	(T.m),(T),(T/	
Field IIItegral =	TRD	(11)	
Coll aperture in or pole gap -	TRD	(T/c)	
Norrating temperature -	TBD	(K)	
Total ampere turns -	TBD	(Aturns)	
Total number of num Layers -	TBD	(Auris)	
aver function -	TBD		
This layer index =	TBD		
Number of turns per pole =	TBD		
Current =	TBD	(A)	
Inductance =	TBD	(H)	
Stored energy =	TBD	(MJ)	
Resistance =	TBD	(mOhm)	
Engineering current density =	TBD	(A/mm2)	
Power dissipation =	TBD	(W)	
Peak field in winding =	TBD	(T)	
Aagnet bore Harmonics			
Analysis radius R, Analysis current I, =	TBD	(mm) (A)	
Field at L and R.=	TBD	т	
Design harmonics allowed multipoles =	TBD	(10-4)	
Design harmonics nonallowed multipoles =	TBD	(10-4)	
talk and fringe fields			
		(mm,mm,m	
Xtalk Location (x,y,z) =	TBD	m)	
Xtalk analysis radius R ₄ , Analysis current I ₄ =	TBD	(mm) (A)	
Xtalk Field at I _A and R _A =	TBD	(T)	
Xtalk harmonics multipoles =	TBD	(10-4)	
Location of Fringe filed R or Location (x,y,z) =	TBD	(mm)	
Value of fringe field at target location =	TBD	(T)	
C Cables, Strand's =			
Superconductor type used =	TBD		
Conductor\cable used =	TBD		
Cu:Sc ratio =	TBD		
Critical field of wire =	TBD	(T)	
Xsectional area of wire =	TBD	(mm2)	
Critical current of wire =	TBD	(A)	
Critical temperature =	TBD	(K)	
Operating margin =	TBD	%	

Issues & outstanding work needed

Add here as needed

Magnet heat load\Cooling			
Operational temp of magnet =	TBD	(K)	
Max operational temp of magnet =	TBD	(K)	
Nominal operating heat loads =	TBD	(W)	
Peak quench heat loads =	TBD	(W)	
Peak quench heat load duration =	TBD	(s)	
Coils			
Coil width in X (od or dx) =	TBD	(m)	
Coil height (od or dy) =	TBD	(m)	
Coil length dz =	TBD	(m)	
Mass of coils =	TBD	(Kg)	
Iron collar\Yoke			
		(Cold,Warm	
Iron temp=	Cold)	
Iron extent (od or dx) =	TBD	(m)	
Iron extent (od or dy) =	TBD	(m)	
Iron length dz =	TBD	(m)	
Yoke mass =	TBD	(Kg)	
Cold Mass			
Cold mass extent (od or dx) =	TBD	(m)	
Cold mass extent (od or dy) =	TBD	(m)	
Cold mass length dz =	TBD	(m)	
Coldmass mass =	TBD	(Kg)	
Fully Assembled insertion			
Complete magnet width dx =	TBD	(m)	
Complete magnet height =	TBD	(m)	
Complete magnet length dz =	TBD	(m)	
Full assembly mass =	TBD	(Kg)	

Q2pF Design Status

Feb 7, 2024

Mechanical & Thermal design

Q2pF Design Status

Feb 7, 2024

EM\Mechanical analysis details 1

Q2pF Design Status

Feb 7, 2024
EIC IR Magnet Q2pF Mechanical Structure Finite Element Analyses

John Cozzolino / Chris Runyan

Outline:

- 2-D Analyses
- 3-D Coil End Analysis
- End Plate Axial Support Analyses

Note: this is a compilation of preliminary work performed in 2021; work will be reviewed shortly for consistency with the present design, repeated if necessary

Q2pF 2-D FEA

John Cozzolino

Q2pF Straight Section

- 403 mm collar O.D.
- 30.6 mm collar radial thickness
- 1200 mm yoke O.D.
- Block current density: 253 A/mm²
- 40 T/m flux gradient (approx.)
- 8700 A operating current

Physicist's design files: Q2pF-15mm2K30mmcol-h379-8500A.dxfxy Q2pF-15mm2K30mmcol-h379-8500A.dxfiron

Q2pF - Warm Collared

Q2pF - Cold vs. Powered

Radial coil movement at mid-plane from cold to powered = 79 microns.

EIC Q2pF 3D FE Coil FEA Non-Lead End (preliminary)

John Cozzolino May 14, 2021

Q2pF Non-Lead End (3-D)

- 262 mm collar O.D.
- 1100 mm yoke O.D.
- 20 mm collar radial thickness
- 127 mm thick end plate
- Current = 7510 A
- 6.7 T peak field
- 39 T/m Flux Gradient

Q2pF Non-Lead End (3-D)

Q2pF Non-Lead End (3-D)

Model Features

- 3-D conductor geometry and path imported from Roxio directly into Creo.
 - Kapton insulation, wedges, spacers, and saddles added separately
- Only the coil end is modeled in Maxwell as individual turns to save run time.
 - · Straight section introduced in the mechanical model.
 - · Straight section coil forces and collar stresses studied in separate FE simulation
- · Lorentz forces calculated in Maxwell are mapped into the mechanical model.
- Coil axial support structure modeled accurately
- · Coil azimuthal and axial preload included
 - · Both are iterated and optimized in this simulation
- NbTi conductor: E = 1.45e⁶ psi, Isotropic instantaneous CTE = 5.58 e⁻⁶ /deg F.
- Frictional contact between shell-yoke, yoke-collar, and collar-coil.

Maxwell Geometry

Q2pF Non-Lead End Field Vectors and Lorentz Forces

Q2pF Lorentz Forces Mapped into Mechanical Model

Q2pF Mesh – mechanical model

Q2pF End – Equivalent Axial Strain

EIC Endplate Analyses

Chris Runyan ANSYS 2020 R1 Updated 01/29/21

Q2pF NLE Endplate Z deformation

Q2pF NLE Tie Rod Z deformation

Q2pF NLE Endplate Stress

Q2pF NLE Tie Rod Stress

Q2pF NLE Setscrew Stress

Q2pF LE Endplate Z deformation

Q2pF LE Tie Rod Z deformation

Q2pF LE Endplate Stress

Q2pF LE Tie Rod Stress

Q2pF LE Setscrew Stress

EM\Mech\Thermal analysis Section

EM\Thermal\Mechanical model check list	Y/N/?
Have mechanical models to understand the stress distributions in the windings been understood.	
Are full cycle stress analysis from winding, prestressing, cool down and powering (if needed) been carried out.	
Are the effects of mechanical tolerances on the EM design analyzed and understood	
Does the design need shimming	
Has provisions for shimming been included in the design	
Is the shinning capacity of the design known.	
Has the effect of material variability in the Iron been analyzed and understood.	
Is it understood if eddy currents an issue in any of the magnet components	
Has the any updated magnet design information an a result of this analysis been recorded in the requirements folder .	
Have persistent current effects on field quality been analyzed.	
For combined magnets has the inductance coupling matrix been calculated.	
Has a protection strategy been defined?	

Q2pF Design Status

Feb 7, 2024

EM\Mechanical analysis details 3

Combined magnet coupled Induction table

For combined magnets add Induction coupling matrix here

Q2pF Design Status

Feb 7, 2024

EM\Mech design analysis Summary

Func 1		N
Hyperlink		
New		
Q2PF		
1		
TBD	(m)	
TBD	(mm)	
	(T),(T/m),(T/	
TBD	m2)	
TRD	(1.m),(T),(T/ m)	
TBD	(mm)	
TBD	(T/s)	
TBD	(K)	
TBD	(Aturns)	
TBD		
TBD	(A)	
TBD	(H)	
TBD	(MJ)	
TBD	(mOhm)	
TBD	(A/mm2)	
TBD	(W)	
TBD	(T)	
TBD	(mm) (A)	
TBD	(T)	
TBD	(10-4)	
TBD	(10-4)	
	(mm,mm,m	
TBD	m)	
TBD	(mm) (A)	
TBD	(T)	
TBD	(10-4)	
TBD	(mm)	
TBD	(T)	
TBD	(T)	
TBD	(mm2)	
TBD	(A)	
TBD	(K)	
TBD	%	
	Func 1 Hyperlink New Q2PF 1 TBD TBD </td <td>Func 1Hyperlink,NewQ2PFITTBDMTBD(M)</td>	Func 1Hyperlink,NewQ2PFITTBDMTBD(M)

Issues & outstanding work needed

Add here as needed

Inductance – for combined magnets this is a matrix. Need coupling coefficients

TBD	(K)	
TBD	(K)	
TBD	(W)	
TBD	(W)	
TBD	(s)	
TBD	(m)	
TBD	(m)	
TBD	(m)	
TBD	(Kg)	
Cold	(Cold,Warm	
TBD	(m)	
TBD	(m)	
TBD	(m)	
TBD	(Kg)	
TBD	(m)	
TBD	(m)	
TBD	(m)	
TBD	(Kg)	
TBD	(m)	
TBD	(m)	
TBD	(m)	
TBD	(Kg)	
	TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD	Image: second

Q2pF Design Status

Feb 7, 2024

Quench Analysis

Quench protection of EIC collared magnets

V. Marinozzi 11/17/2023

Q2pF Design Status

Feb 7, 2024

Quench Analysis Section

Conceptual EM model check list	Y/N/?
Has a preliminary quench analysis like XQuench been carried out	
Is the production conductor, insulation, resin captured in the model	
Are the peak temperatures and stresses likely to damage the coil	
Is a more complex quench analysis needed	
Is a quench protection resistor needed.	
Are Quench heaters needed.	
Are diodes needed.	
Are there significant effects due to the interaction of this coil with surrounding coils when it quenches.	
Has the any updated magnet design information an a result of the quench analysis been recorded in the requirements folder	
Should be filled by Vittorio Marinozzi (FNAL)	

Q2pF Design Status

Feb 7, 2024

Quench Analysis

Conductor

Changed after Q2pF study (JUNE) to 40

Parameter	Value
Strand diameter [mm]	1.065
Number of strands	28
Cable bare width [mm]	15.1
Cable average height [mm]	1.9
Insulation thickness [mm]	0.15
RRR	(40) 70 – 100
Cu/NCu	1.5
Ic @ 4T, 1.9 K [A]	69000

Dump resistor assumptions

- 37.5 m Ω is the preference
- 1 kV between magnet leads is the max limit

Courtesy Vittorio Marinozzi (FNAL)

Q2pF Design Status

Feb 7, 2024

Quench simulation software: QLASA

- Simulations made with QLASA
 - Faster feedback, easier to implement cold diodes to separate the coils
 - No AC losses, no dynamic effect on inductance
 - QH delay time is an input (from quench detection)
 - It's 3D (quench propagates in 3 dimensions after being induced by QH)
 - Fully adiabatic (no helium cooling effect)

Courtesy Vittorio Marinozzi (FNAL)

Q2pF Design Status

Feb 7, 2024

Q2pF quench protection

• Current: 8500 A; Inductance: 75 mH

Results with 37.5 mOhm dump + QH

- Only dump AND QH can protect the magnet (280 K)
- Quench heaters are ineffective alone, but they help the dump effectively
- Dump alone can't protect the magnet
 - Dump resistance can be increased!

Q2pF quench protection (contd.) Results with 80 mOhm dump + QH

- Higher dump much more effective
- Voltage: 680 V between leads

Courtesy Vittorio Marinozzi (FNAL)

Q2pF Design Status

Feb 7, 2024

Q2pF analysis with LEDET

- 2D lumped loop
- Real cos-theta geometry
- Focus on coupling currents (CLIQ)
- Can simulate QH with insulation
- Computes inductance independently
- Magnetic field from ROXIE
- Material properties up to 1000 K and beyond (reliable up to 500 K)

Courtesy Vittorio Marinozzi (FNAL)

Q2pF Design Status

Feb 7, 2024

Assumptions for fair comparison

- I made simulations so that they are as similar as possible
- Fixed QH delay: 60 ms
- QH cover 75% of the turns of the outer layer
- No coupling currents
- Inductance rescaled to match 75 mH (LEDET computes 68 mH)

Courtesy Vittorio Marinozzi (FNAL)

Q2pF Design Status

Feb 7, 2024
Q2pF quench protection (contd.)

MIITs comparison

Current decay and Hot Spot comparison

No dump comparison

No dump comparison

Courtesy Vittorio Marinozzi (FNAL)

Q2pF Design Status

Feb 7, 2024

Quench analysis Summary

Magnet design information	Func 1		
The magnet design info from	Hyperlink		
The magnet design intent is	New		
The magnet model name is	Q2PF		
The number of magnets required is	1		
General Magnet Spec			
Bagnetic length =	TBD	(m)	
Bore tube outer-dia =	TBD	(mm)	
		(T),(T/m),(T/	
Bore field (B or G) =	TBD	m2)	
		(T.m),(T),(T/	
Field integral =	TBD	m)	
Coil aperture IR or pole gap =	TBD	(mm)	
Ramp rate =	TBD	(T/s)	
Operating temperature =	TBD	(K)	
Total ampere turns =	TBD	(Aturns)	
Total number of num Layers =	TBD		
Layer function =	TBD		
This layer index =	TBD		
Number of turns per pole =	TBD		
Current =	TBD	(A)	
Inductance =	TBD	(H)	
Stored energy =	TBD	(MJ)	
Resistance =	TBD	(mOhm)	
Engineering current density =	TBD	(A/mm2)	
Power dissipation =	TBD	(W)	
Peak field in winding =	TBD	(T)	
Magnet bore Harmonics			
Analysis radius R _A Analysis current I _A =	TBD	(mm) (A)	
Field at I _A and R _A =	TBD	(T)	
Design harmonics allowed multipoles =	TBD	(10-4)	
Design harmonics nonallowed multipoles =	TBD	(10-4)	
Xtalk and fringe fields			
		(mm,mm,m	
Xtalk Location (x,y,z) =	TBD	m)	
Xtalk analysis radius R _A , Analysis current I _A =	TBD	(mm) (A)	
Xtalk Field at L and R =	TBD	(T)	
Xtalk harmonics multipoles	TRD	(10-4)	
Location of Fringe filed R or Location (x.v.z) =	TBD	(mm)	
Value of fringe field at target legation -	TPD	(T)	
SC Cables Strand's =	Ibu		
Superconductor type used -	TBD		
Conductor\cable used =	TBD		
Curse ratio -	TBD		
Critical field of wire	TBD	(T)	
Venetional area of wire	TRD	(mm2)	
Asectional area of wire =	TRD	(111112)	
Critical current of wire =	TBD	(A)	
Critical temperature =	TBD	(K)	
Operating margin =	TBD	%	

Issues & outstanding work needed

Will request the person at FNAL who did the quench analysis to update this table (Vittorio Marinozzi)

Magnet heat load\Cooling			
Operational temp of magnet =	TBD	(K)	
Max operational temp of magnet =	TBD	(K)	
Nominal operating heat loads =	TBD	(W)	
Peak quench heat loads =	TBD	(W)	
Peak quench heat load duration =	TBD	(s)	
Coils			
Coil width in X (od or dx) =	TBD	(m)	
Coil height (od or dy) =	TBD	(m)	
Coil length dz =	TBD	(m)	
Mass of coils =	TBD	(Kg)	
Iron collar\Yoke			
Iron temp-	Cold	(Cold,Warm	
Iron extent (od or dx) =	TBD	(m)	
Iron extent (od or dx)	TBD	(m)	
Iron length dz =	TBD	(m)	
Yoke mass =	TBD	(Kg)	
Cold Mass		. 0/	
Cold mass extent (od or dx) =	TBD	(m)	
Cold mass extent (od or dy) =	TBD	(m)	
Cold mass length dz =	TBD	(m)	
Coldmass mass =	TBD	(Kg)	
Fully Assembled insertion			
Complete magnet width dx =	TBD	(m)	
Complete magnet height =	TBD	(m)	
Complete magnet length dz =	TBD	(m)	
Full assembly mass -	TBD	(Ka)	

Courtesy Vittorio Marinozzi (FNAL)

Q2pF Design Status

Feb 7, 2024

Design wrap up (Add current date here)

Q2pF Design Status

Feb 7, 2024

Current Design Summary

Aagnet design information	Func 1		
The magnet design info from	<u>Hyperlink</u>		
The magnet design intent is	New		
The magnet model name is	Q2PF		
The number of magnets required is	1		
General Magnet Spec			
Bagnetic length =	TBD	(m)	
Bore tube outer-dia =	TBD	(mm)	
		(T),(T/m),(T/	
Bore field (B or G) =	TBD	m2)	
Field integral -	TRD	(1.m),(1),(1/ m)	
Field liftegial =	TRD	(mm)	
Ramo rate -	TBD	(T/c)	
Operating temperature =	TBD	(K)	
Total ampere turns =	TBD	(Aturns)	
Total number of num Lavers =	TBD		
Layer function =	TBD		
This layer index =	TBD		
Number of turns per pole =	TBD		
Current =	TBD	(A)	
Inductance =	TBD	(H)	
Stored energy =	TBD	(MJ)	
Resistance =	TBD	(mOhm)	
Engineering current density =	TBD	(A/mm2)	
Power dissipation =	TBD	(W)	
Peak field in winding =	TBD	(T)	
Aagnet bore Harmonics			
Analysis radius R _A Analysis current I _A =	TBD	(mm) (A)	
Field at I _A and R _A =	TBD	(T)	
Design harmonics allowed multipoles =	TBD	(10-4)	
Design harmonics nonallowed multipoles =	TBD	(10-4)	
talk and fringe fields			
		(mm,mm,m	
Xtalk Location (x,y,z) =	TBD	m)	
Xtalk analysis radius R ₄ , Analysis current I ₄ =	TBD	(mm) (A)	
Xtalk Field at I _A and R _A =	TBD	(T)	
Xtalk harmonics multipoles =	TBD	(10-4)	
Location of Fringe filed R or Location (x,y,z) =	TBD	(mm)	
Value of fringe field at target location =	TBD	(T)	
C Cables, Strand's =			
Superconductor type used =	TBD		
Conductor\cable used =	TBD		
Cu:Sc ratio =	TBD		
Critical field of wire =	TBD	(T)	
Xsectional area of wire =	TBD	(mm2)	
Critical current of wire =	TBD	(A)	
Critical temperature =	TBD	(K)	
Operating margin =	TBD	%	

Magnet summary table

Add any notes here as needed

Magnet heat load\Cooling			
Operational temp of magnet =	TBD	(K)	
Max operational temp of magnet =	TBD	(K)	
Nominal operating heat loads =	TBD	(W)	
Peak quench heat loads =	TBD	(W)	
Peak quench heat load duration =	TBD	(s)	
Coils			
Coil width in X (od or dx) =	TBD	(m)	
Coil height (od or dy) =	TBD	(m)	
Coil length dz =	TBD	(m)	
Mass of coils =	TBD	(Kg)	
Iron collar\Yoke			
		(Cold,Warm	
Iron temp=	Cold)	
Iron extent (od or dx) =	TBD	(m)	
Iron extent (od or dy) =	TBD	(m)	
Iron length dz =	TBD	(m)	
Yoke mass =	TBD	(Kg)	
Cold Mass			
Cold mass extent (od or dx) =	TBD	(m)	
Cold mass extent (od or dy) =	TBD	(m)	
Cold mass length dz =	TBD	(m)	
Coldmass mass =	TBD	(Kg)	
Fully Assembled insertion			
Complete magnet width dx =	TBD	(m)	
Complete magnet height =	TBD	(m)	
Complete magnet length dz =	TBD	(m)	
Full assembly mass =	TBD	(Kg)	

Q2pF Design Status

Feb 7, 2024

Current Design Summary

Issues & outstanding work needed

Add here as needed

Q2pF Design Status

Feb 7, 2024

Appendices

Q2pF Design Status

Feb 7, 2024

Scope

The purpose of this review is to status the IR magnet designs.

Identify the baseline design and its parameters.

Align requirements with magnet design.

Inform the team of Progress made and work outstanding.

Utilize the knowledge and experience of your colleague to inform your designs

Formally commit the most design to the design archive.

PowerPoint Notes have some instructions also see design folder content in appendices .

Q2pF Design Status

Feb 7, 2024

Design Archive Info

EIC IR Magnets

Populate folders and XLSX design book 🖄 Discard changes 🐼 Page details 🛛 🗔 Analytics Name Status Documents > MagnetDesigns > Current Design Info EM design detailed \odot + New 🗸 🔺 Upload 🗸 🙆 Share 👄 Copy link 🚑 Sync 🞍 I EM design Peliminary Mechanical&Thermal analysis \odot D Name \sim Modified ~ Quench Analysis \odot 2019-06 May 11, 2023 B0APF+SkQ+Vcorr_design_info_mm-dd-... \odot 2023-01 May 11, 2023 Yesterday at 8:59 PM 2024-01 ARCHIVE November 29, 2023 XLSX design book Add design Notes here if needed Design values here 2024 Magnet folders B0APF+SkQ+Vcorr BOPE-&-OOFE B1APF B1PF B2PF Q1APF Q1APR-&-Q1ER-SkQ Q1BPF+Sk-&-Q1EF+SkQ Q1BPR-&-Q2ER dil a li da da la Q2PF ulual lul ur lu ulual lul ur lu Q2PR-&-B2AER-&-B2BER SPIN_SOL_LONG SPIN_SOL_SHORT **Electron-Ion Collider**

Q2pF Design Status

Feb 7, 2024

Design archive content

Magnet design information	Func 1	Func 2	Func 3		
The magnet design info from	Hyperlink	Hyperlink	Hyperlink		
The magnet design intent is	New	New	New		
The magnet model name is	BOAPF	SC-DW	B0APF-Vcorr		
The number of magnets required is	1	1	1		
General Magnet Spec					
Bagnetic length =	TBD	TBD	TBD	(m)	
Bore tube outer-dia =	TBD	TBD	TBD	(mm)	
				(T),(T/m),(T/	
Bore field (B or G) =	TBD	TBD	TBD	m2)	
	-			(T.m),(T),(T/	
Field integral =	TBD	TBD	TBD	m)	
Coll aperture ik or pole gap =	TRD	TBD	TBD	(mm) (T(-)	
Ramp rate =	TRD	TBD	TRD	(1/5)	
	TRD	TBD	TRD	(N)	
Total number of num Layors -	TRD	TRD	TRD	(Aturns)	
Total number of num Layers =	TRD	TRD	TRD		
This layer index -	TRD	TBD	TBD		
Number of turns per pole =	TBD	TBD	TBD		
Current =	TBD	TBD	TBD	(A)	
Inductance =	TBD	TBD	TBD	(H)	
Stored energy =	TBD	TBD	TBD	(MI)	
Resistance =	TBD	TBD	TBD	(mOhm)	
Engineering current density =	TBD	TBD	TBD	(A/mm2)	
Power dissipation =	TBD	TBD	TBD	(W)	
Peak field in winding =	TBD	TBD	TBD	(T)	
Magnet bore Harmonics					
Analysis radius R ₄ Analysis current I ₄ =	TBD	TBD	TBD	(mm) (A)	
Field at I _A and R _A =	TBD	TBD	TBD	(T)	
Design harmonics allowed multipoles =	TBD	TBD	TBD	(10-4)	
Design harmonics nonallowed multipoles =	TBD	TBD	TBD	(10-4)	
Xtalk and fringe fields					
				(mm,mm,m	
Xtalk Location (x,y,z) =	TBD	TBD	TBD	m)	
Xtalk analysis radius R _A , Analysis current I _A =	TBD	TBD	TBD	(mm) (A)	
Xtalk Field at I _A and R _A =	TBD	TBD	TBD	(T)	
Xtalk harmonics multipoles =	TBD	TBD	TBD	(10-4)	
Location of Fringe filed R or Location (x,y,z) =	TBD	TBD	TBD	(mm)	
Value of fringe field at target location =	TBD	TBD	TBD	(т)	
SC Cables, Strand's =					
Superconductor type used =	TBD	TBD	TBD		
Conductor\cable used =	TBD	TBD	TBD		
Cu:Sc ratio =	TBD	TBD	TBD		
Critical field of wire =	TBD	TBD	TBD	(T)	
Xsectional area of wire =	TBD	TBD	TBD	(mm2)	
Critical current of wire =	TBD	TBD	TBD	(A)	
Critical temperature =	TBD	TBD	TBD	(К)	
Operating margin =	TBD	TBD	TBD	%	

Magnet summary table

Add any notes here as needed

Magnet heat load\Cooling				
Operational temp of magnet =	TBD	TBD	TBD	(K)
Max operational temp of magnet =	TBD	TBD	TBD	(K)
Nominal operating heat loads =	TBD	TBD	TBD	(W)
Peak quench heat loads =	TBD	TBD	TBD	(W)
Peak quench heat load duration =	TBD	TBD	TBD	(s)
Coils				
Coil width in X (od or dx) =	TBD	TBD	TBD	(m)
Coil height (od or dy) =	TBD	TBD	TBD	(m)
Coil length dz =	TBD	TBD	TBD	(m)
Mass of coils =	TBD	TBD	TBD	(Kg)
Iron collar\Yoke				
Iron temp=	Cold	Cold	Cold	(Cold,Warm
Iron extent (od or dx) =	TBD	TBD	TBD	(m)
Iron extent (od or dy) =	TBD	TBD	TBD	(m)
Iron length dz =	TBD	TBD	TBD	(m)
Yoke mass =	TBD	TBD	TBD	(Kg)
Cold Mass				
Cold mass extent (od or dx) =	TBD	TBD	TBD	(m)
Cold mass extent (od or dy) =	TBD	TBD	TBD	(m)
Cold mass length dz =	TBD	TBD	TBD	(m)
Coldmass mass =	TBD	TBD	TBD	(Kg)
Fully Assembled insertion				
Complete magnet width dx =	TBD	TBD	TBD	(m)
Complete magnet height =	TBD	TBD	TBD	(m)
Complete magnet length dz =	TBD	TBD	TBD	(m)
Full assembly mass =	TBD	TBD	TBD	(Kg)

Q2pF Design Status

Feb 7, 2024

Useful Links

Location of shortcuts in 2024 SharePoint folder

Link to IR prod wire spec can be found in the 2024 folder

Link to IR Requirements can be found in the 2024 folder

Windows view	1.6	24.04
Documents > MagnetDesigns > Current Design	n Info > 20)24-01
Name	Status	E.
B0APF+SkQ+Vcorr	\odot	1
B0PF-&-Q0EF	\odot	1
B1APF	0	1
B1PF	\odot	1
B2PF	0	1
Q1APF	0	1
Q1APR-&-Q1ER-SkQ	0	1
Q1BPF+Sk-&-Q1EF+SkQ	0	1
Q1BPR-&-Q2ER	0	1
Q2PF	0	1
Q2PR-&-B2AER-&-B2BER	0	1
SPIN_SOL_LONG	0	1
SPIN SOL SHORT	0	1
🚌 IR Region SC Production wire spec	\odot	2
殸 Link to IR magnet requirements	\odot	2
Magnet Status Review_v1.pptx	0	2
SC status meeting dates owners 2024 docx	0	1

Sharepoint view

