

Revised Q2pF Cross-section with updated turn-to-turn spacing

Ramesh Gupta March 5, 2024

Updated Cross-section

- Cross-section needs to be updated to accommodate a significant change in turn-to-turn spacing (0.0965 mm instead of 0.12 mm)
- Since the inner layer has 35 turns and the outer 34 turns, means a decrease of over 0.8 mm in each layer. This is a large change compared to the typical acceptable tolerances of 50 μm (2 mils).
- > Such a large change test the flexibility of the design.
- > Initial results show that it can be accommodated.

Revised X-section with Symmetric Wedges

- Uses EIC Quad Cable
- Field Quality Optimized
- Peak field Optimized
- Poles of Outer and Inner aligned
- Wedges made exactly symmetric
- Collaring process should provide a good pre-stress

(note: wedge shape at poles)

(same as before)

Ramesh Gupta

180

Looks good mechanically

Comparison with the Previous Design

Previous Design

ŧ	EICQZIII
5	ALLPOLYIL

0.15 0.084 EICQ2PT IEST I 0.15 0.12 POLYIMID MB INNER

Previous value of insulation

Block Data 2D

No	Туре		NCab	R	#	a	Current	Cable name	N1	N2 I
1	Cos	•	31	140	0,54	0	-8500	EICLHCQ2K 💌	2	20 0
2	Cos	▼	4	140	31,179	25,196	-8500	EICLHCQ2K 🔻	2	20 0
3	Cos	•	21	156	0.54	0	-8500	EICLHCQ2K 🔻	2	20 0
4	Cos	•	13	156	17	30	-8500	EICLHCQ2K 🔻	2	20 0

No	X1	Xu	Xs String	Act	Block
1	3	9	6.44 PHIRS	2 🔻	2
2	6	12	10,34 PHIRS	2 🔻	4
3	0	0	0 ALPHRS	2 🔻	2
4	0	0	0 ALPHRS	2 🔻	4

New Design

I.	T RHKF	VI	UBHRE	
	2 EICQ2INS	0,15	0.0965 EICQ2PF insulation	1
In the		0.45	A ADA ETODODE TEOT A	÷.,

New value of insulation

(†	Bloc	k Data	2D								
[No	Туре		NCab	Х	Y	a	Current	Cable name	N1	N2]
	1	Cos	•	31	140	0,5	0	1000	EICQ2PF 💌	2	20 0
	2	Cos	•	4	140	32,2986	32,0511	1000	EICQ2PF 💌	2	20 0
	3	Cos	•	19	156	0,46	0	1000	EICQ2PF 💌	2	20 0
	4	Cos	-	15	156	24,6366	23,0593	1000	EICQ2PF 💌	2	20 0

No	X1	Xu	Xs	String	Ac	t	N/a
1	0.5	1.3	0.5	PHI	2	▼	1
2	0,45	1.3	0,46	PHI	2	▼	3
3	2	9	6,6685	PHIRS	2	▼	2
4	2	12	10,3535	PHIRS	2	▼	4
5	0	0	0	ALPHRS	2	▼	2
6	0	0	0	ALPHRS	2	-	4

Ramesh Gupta

Cross-section (ROXIE)

Ramesh Gupta

Comparison with the Previous Design (Field Harmonics)

Previous Design

New Design

							HARMONIC	ANALISIS	NOPIDER				1
HARMONIC A	NALYSIS N	UMBER				1	MAIN HAR	MONIC					2
MAIN HARMO	NIC					2	REFERENC	CE RADIUS (mm)				83.0000
REFERENCE	RADIUS (n	nm)				83.0000	X-POSITI	ION OF THE	HARMON	IC COIL (mm)			0.0000
X-POSITION	OF THE H	HARMON	IC COIL (mm)			0.0000	Y-POSITI	ION OF THE	HARMON	IC COIL (mm)			0.0000
Y-POSITION	OF THE H	HARMON	IC COIL (mm)			0.0000	MEASUREN	MENT TYPE .			AI	LL FIELD CON	TRIBUTIONS
MEASUREMEN	T TYPE			ALL	FIELD CONT	RIBUTIONS	ERROR OF	F HARMONIC	ANALYS	IS OF Br			0.9964E-04
ERROR OF H	ARMONIC A	ANALYS	IS OF Br		0	.6776E-04	SUM (Br	(p) – SUM (An cos	(np) + Bn sin	(np))		
SUM (Br(p)	- SUM (2	An cos	(np) + Bn sin	(np))									
						MAIN FIELD (T)						3.176139	
MAIN FILLD) (T)	/ (m^ (n	_1))	• • • • • • • • •		3.14/302	MAGNET S	STRENGTH (T	!/ (m^ (n	-1))			38.2667
MAGNEI SIK	ENGIN (1)	(111 (11)	-1))			57.9217							
NORMAL REL	ATTVE MIT		ES (1 D-4) ·				NORMAL F	RELATIVE MU	LTIPOL	ES (1.D-4):			
b 1: -	0.14254	b 2:	10000.00000	b 3:	0.00250		b 1:	-0.30804	b 2:	10000.00000	b 3:	0.06621	
b 4: -	0.01577	b 5:	0.02641	b 6:	-0.10295		b 4:	-0.02748	b 5:	-0.02339	b 6:	0.21543	
b 7: -	0.00201	b 8:	-0.00094	b 9:	0.00065		b 7:	-0.00139	b 8:	-0.00180	b 9:	-0.00012	
b10: -	0.40774	b11:	-0.00011	b12:	0.00000		b10:	0.03688	b11:	-0.00009	b12:	-0.00000	
b13: -	0.00002	b14:	-0.46484	b15:	0.00000		b13:	0.00001	b14:	-0.29429	b15:	0.00000	
b16: -	0.00000	b17:	-0.00000	b18:	0.00550		b16:	0.00000	b17:	0.00000	b18:	-0.00151	

~1% higher transfer function > better field quality (see b10 and b14)

UNDMONTO ANALVELE NUMBER

Comparison with the Previous Design (Peak Fields at 8500 A)

Comparison with the Previous Design (Quench Margin)

Ramesh Gupta

Magnet Division

Field and Temperature Margins

Ramesh Gupta

Magnet Division

GRAPH NO: 1. 2. 3.

Saturation-induced Harmonics

Looks ok (within 1 unit) Can be optimized more

Ramesh Gupta

Summary

- Change in turn-to-turn spacing in the 2-d design could be quickly absorbed in the revised cross-section
- New design has about the similar performance as before a little higher transfer function and a little better field quality (lower b6 and b10 harmonics)
- Since the detailed engineering design has not yet started, this update should not bring any appreciable delay in the overall schedule
- 3d end design has to be re-optimized for peak field and 3-d field harmonics (estimate about 2 weeks for both return and lead ends).
- This was a good test run for the ability to absorb surprises (hopefully not too many will come in future but always be ready for them)

