

Status of Q2PF Quad EM Design

Ramesh Gupta

Meeting with Fermilab on Options for EIC SC Forward Quadrupoles

April 18, 2024

Electron-Ion Collider

Q2pF Coil Cross-section

Main Features:

- Two layers, 69 turns
- Only one wedge in each layer
- Poles of Outer and Inner layers aligned
- Symmetric wedges
- Significant midplane gap for tuning allowed harmonics, and possibly some non-allowed also, when used with the pole shims (RHIC and SSC experience)

Electron-Ion Collider

Status of Q2pF EM Design, R. Gupta, BNL/FNAL Meeting, April 18, 2024

40

60

80

100

120

140

160

20

Coil and Yoke Cross-section

Electron-Ion Collider

Peak Field and Margin

Design gradient reached at ~8.5 kA Peak field Enhancement: 18% (max field over the midplane field)

Margin on Load-line: 38% Conventional definition: 56% (short sample over design)

Electron-Ion Collider

Field and Temperature Margins (in individual blocks)

Quench margins in the body of the magnet

Electron-Ion Collider

Field Harmonics at the Design Field

HARMONI MAIN HA REFEREN	IC ANALYSIS ARMONIC NCE RADIUS (MUMBER	C COTL (mm)	· · · · · · · · · · · · · · · · · · ·		1 2 83.0000
V_DOST	TION OF THE	UNDMONT	C COIL (mm)			0.0000
MEACUDI	MENT TYPE	TARFION			L ETELD CON	
MEASURI	SMENT TIPE .			AI	T LIPPD COL	NTRIBUTIONS
ERROR	OF HARMONIC	ANALYSI	IS OF Br		• • • • • • • • •	0.9964E-04
SUM (B)	r(p) - SUM (An cos	(np) + Bn sin	(np))		
MAIN FI	IELD (T)				· · · · · · · · ·	3.176139
MAGNET	STRENGTH (T	/ (m^ (n-	-1))			38.2667
NORMAL	RELATIVE MU	LTIPOLE	ES (1.D-4):			
b 1:	-0.30804	b 2:	10000.00000	b 3:	0.0662	1
b 4:	-0.02748	b 5:	-0.02339	b 6:	0.2154	3
b 7:	-0.00139	b 8:	-0.00180	b 9:	-0.00013	2
b10:	0.03688	b11:	-0.00009	b12:	-0.0000	0
b13:	0.00001	b14:	-0.29429	b15:	0.0000	0
b16:	0.00000	b17:	0.00000	b18:	-0.0015	1

Electron-Ion Collider

Status of Q2pF EM Design, R. Gupta, BNL/FNAL Meeting, April 18, 2024

All harmonics < 1 unit

Yoke Optimization for EIC Magnets

- Yoke must be optimized to make sure that field harmonics due to iron saturation, don't get out of specifications through-out the range of operation.
- Fringe field in the hole (where electron beam traverses), stays within acceptable limit. This is not common in other colliders, but critical for EIC, and is expected to be worse at high fields.

Electron-Ion Collider

EM Yoke Optimization (1)

Holes for Tie Rods – Turning them in to an opportunity

• Strategy: Large holes for tie rods clearly make a significant impact on iron saturation. Let's try to make use of those large holes as a tool of opportunity!

Tie rods are strategically placed to control saturation

Electron-Ion Collider

EM Yoke Optimization (2)

Tie Rods to Reduce Saturation-induced Harmonics

Optimized Iron: Major reduction in saturation induced allowed harmonics (order of magnitude)

Field Gradient @7.7 kA goes down from 36.2 T/m to 35.7 T/m for 2X holes (controlled saturation)Magnet DivisionRamesh GuptaQ2pF Cross-section for 2K OperationApril 5, 202220

A large reduction in saturation induced b₆

Electron-Ion Collider

EM Yoke Optimization (3)

The location and size of holes for tie rods is used to divert field away from the electron beam hole

Uniform field brings a much larger reduction in B_n 's Measure the merit of a solution by |B| or by B_n 's?

Evaluation of the impact of the fringe field on the electron beam from the nearby hadron magnets

- Current approach is to make the fringe field below the earth's magnet field.
- Shouldn't this be evaluated as the harmonic errors?
- Otherwise, we may be putting unnecessarily stringent requirements on the magnets and infrastructure cost.
- Suggestion: Study the beam dynamics impact of the computed error harmonics on the electron beam from the excitation of the nearby hadron magnet.
- There are other sources and ways to deal with small field or field gradient

Electron-Ion Collider

Cross-talk in the current design of Q2pF

Cross-talk for electron beam (harmonics are in Tesla.unit)

Cross-talk for hadron beam (harmonics normalized to quad field)

Design current: ~8500 A, error harmonics remain small 30% above that

Superconducting Shield for electron Beam (1)

*Work supported by two Phase I SBIR/STTR and one Phase II, specifically for EIC

Electron-Ion Collider

Superconducting Shield for electron Beam (2)

*Work supported by two Phase I SBIR/STTR and one Phase II, specifically for EIC

Demonstration of Superconducting Shielding in a Phase II Magnet

Demonstration of Superconducting Shielding (with Additional A4K)

Ramesh Gupta for PBL/BNL Team, A Novel, Medium-field Optimum Integral Dipole, MT-28

Electron-Ion Collider

Magnet Division

Slides on the End design

(if time permits)

Electron-Ion Collider

Strategy for Optimizing Layout of Turns in EIC Magnet

- EIC IR cable magnet coils have much larger aperture than that in typical NbTi accelerator magnets
- Therefore, the criterion or optimization methods used in designing ends of previous cable magnets (as in ROXIE or bend or in earlier BNL design), may not be valid.
- This was realized early in the program, and a single turn winding test with similar cable was planned for an initial check.
- A request was made to CERN for leftover LHC cable (same width but a slightly different keystone). CERN provided. THANKS.
- Single turn winding tests were performed for B1pF. It was found that it is best to use ROXIE for creating layout of turns in the ends, but not for optimizing as they produce excessive tilt.
- A similar strategy is being followed on all EIC cable magnets.

Electron-Ion Collider

Return End (min tilt angle 70°)

Electron-Ion Collider

Peak Field Enhancement in the Ends

ne/gupta/EIC/Q2pF/2024/Q2pF24March/3d/Q2pF-RE-2layers-03-11-2024c.data] —

End configuration iterated for smaller peak fields in the ends. Final optimization after the winding trials.

ROXIE calculations

- Peak field in 2-d: 6.89 T
- Peak field in 3-d: 7.09 T

Only about ~2.9% higher peak field than that in the x-section (calculation errors?)

RESULTS OF	THE 3D PEAK FIELD	CALCULATION	
PEAK FIELD	IN CONDUCTOR 10	(T) · · · · · · · · · · · · · · · · · · ·	3.0567
PEAK FIELD	IN CONDUCTOR 10	(T)	3 0567
DESILTES OF	THE 2D DEAK FIFTD		5.0507
RESOLIS OF	THE SD FEAK FIELD	CALCULATION	
PEAK FIELD	IN CONDUCTOR 19	(T)	4.4683
PEAK FIELD	IN CONDUCTOR 19	(T)	4.4683
RESULTS OF	THE 3D PEAK FIELD	CALCULATION	
PEAK FIELD	IN CONDUCTOR 29	(T)	6.7153
PEAK FIELD	IN CONDUCTOR 29	(T)	6.7153
RESULTS OF	THE 3D PEAK FIELD	CALCULATION	
PEAK FIELD	IN CONDUCTOR 32	(T)	6.7893
PEAK FIELD	IN CONDUCTOR 32	(T)	6.7893
RESULTS OF	THE 3D PEAK FIELD	CALCULATION	
PEAK FIELD	IN CONDUCTOR 34	(T)	7.0905
PEAK FIELD	IN CONDUCTOR 34	(T)	7.0905
RESULTS OF	THE 3D PEAK FIELD	CALCULATION	
PEAK FIELD	IN CONDUCTOR 45	(T)	5.8845
PEAK FIELD	IN CONDUCTOR 45	(T)	5.8845
RESULTS OF	THE 3D PEAK FIELD	CALCULATION	
PEAK FIELD	IN CONDUCTOR 65	(T)	6.8664
PEAK FIELD	IN CONDUCTOR 65	(T)	6.8664
RESULTS OF	THE 3D PEAK FIELD	CALCULATION	
PEAK FIELD	IN CONDUCTOR 69	(T)	6.8508
PEAK FIELD	IN CONDUCTOR 69	(T)	6.8508

Turn #34 is the pole turn in the outer layer

Electron-Ion Collider

Integrated harmonics (3-d) in the Return End

ne/gupta/EIC/Q2pF/2024/Q2pF24March/3d/Q2pF-RE-2layers-03-11-2024c.data] –

End configuration for lower integrated harmonics in the ends.

A reasonable end design:

- All integrated field harmonics are well within 1.
- Final optimization to be performed after the winding trials and with non-linear iron.

HARMONIC ANALYSIS NUMBER	1
MAIN HARMONIC	2
REFERENCE RADIUS (mm)	83.0000
X-POSITION OF THE HARMONIC COIL (mm)	0.0000
-POSITION OF THE HARMONIC COIL (mm)	0.0000
NUMBER OF ANALYSES ALONG Z	200
ENGTH OF VIRTUAL COIL (mm)	5000.0000
REFERENCE POSITION NUMBER	100
MEASUREMENT TYPE ALL FIELD	CONTRIBUTIONS
RROR OF HARMONIC ANALYSIS OF Br	0.7379E-04
SUM (Br(p) - SUM (An cos(np) + Bn sin(np))	

3D REFERENCE MAIN FIELD (T)	-3.4447
REFERENCE MAGNET STRENGTH (T/(m^(n-1))	-41.5020
MAGNETIC LENGTH (mm)	3449.5399

ORMAL 3D INTEGRAL RELATIVE MULTIPOLES (1.D-4):

1:	0.00000	b 2:	10000.00000	b 3:	-0.00000
4:	0.00000	b 5:	0.00000	b 6:	-0.34649
7:	-0.00000	b 8:	-0.00000	b 9:	-0.00000
10:	-0.02086	b11:	0.00000	b12:	0.00000
13:	-0.00000	b14:	-0.27946	b15:	-0.00000
16:	-0.00000	b17:	0.00000	b18:	-0.00529

Electron-Ion Collider

Lead End (min tilt angle 70°)

End turns of the outer layer and the inner layers aligned

Electron-Ion Collider

Renderings of the Outer Layer of Lead End

Looks reasonably ok; to be examined more carefully

Electron-Ion Collider

Renderings of the Inner Layer of the Lead End

Looks reasonably ok; to be examined more carefully

Electron-Ion Collider

Renderings of Both Layers of the Lead End

Looks reasonably ok; to be examined more carefully

Electron-Ion Collider

EM 3-d yoke

(earlier coil ends but for yoke it shouldn't matter much)

Calculation of Peak Field with OPERA3d (non-linear iron)

Integration method for the coil field to assure a reasonable accuracy

Electron-Ion Collider