TRIUMF

Methods of Designing a Synchrotron Lattice with High Transition Energy

Ramesh C. Gupta

This work has been done under the supervision of Drs. M.K. Craddock and J.I.M. Botman in the Accelerator Research Division at TRIUMF during the period of May 1983 to December 1983 for the M.Sc. Course in Accelerator Physics at the University of Manitoba.

TRIUMF 4004 Wesbrook Mall Vancouver, B.C. V6T 2A3

February 1984

Acknowledgements

I wish to express my sincere appreciation to Drs. M.K. Craddock and J.I.M. Botman for their continual guidance and encouragement during the course of this work and in preparing this report.

I wish to thank Dr. R. Servranckx of the University of Saskatchewan for much helpful advice, especially in connection with using the lattice code DIMAT. The assistance of the members of the computing services, and Fred Jones in particular, has been very valuable.

TRIUMF	4004 WESBROOK M	ALL, UBC CAMPUS, VA	ANCOUVER, B.C. V61	2A3
DESIGN NOTE	Ramesh C. Gupta	DATE December 1983	FILE NO. TRI-DN-83-51	PAGE 1
SUBJECT Methods of Desi	igning a Synchrotron Lat	tice with High Ene	rgy Transition Ene	rgy

Abstract

BP 81-411

In this report various methods of designing a synchrotron lattice with high transition energy are described. All schemes are based on making a periodic lattice with the number of periods n just above the horizontal tune of the machine. An nth harmonic component is introduced by modulating either the focusing or the bending fields or both in each period. Ways to generate this modulation are explored and the effects on the lattice functions examined. Some of the methods provide long drift spaces or straight sections which may be utilized for injection, extraction, RF acceleration etc.

TRIU	MF	4004 WESBROOK M	ALL, UBC CAMPUS, VA	NCOUVER, B.C. V6	T 2A3		
DESIGN	NOTE	Ramesh C. Gupta December 1983 File NO. TRI-DN-83-					
BJECT Method	ls of Desi	gning a Synchrotron Lat	tice with High Ener	gy Transition Ene	ergy		
			÷,				
ontents				e.			
Abst	ract		XX 2				
1.	Introduct	ion.					
2.	Theory						
	2.1 Phase	e Stability and Transit	ion Energy.				
8	2.2 Revi	ew of the theory of the	e strong focusing sy	ynchrotron.			
	2.3 Prin	ciple of changing the t	ransition energy.	and a function			
	2.4 Effe	ct of changing transiti	on energy on the 18	attice functions.			
3.	Methods t	o design a high transit	ion energy lattice	1. N			
	3.1 Reve	rse field magnets.	*				
×	3.2 Pair	s of trim quadrupoles.		2			
	3.3 Modu	lation in the magnet di	stribution.				
	(a) Miss	ing magnet cells.					
	(b) oneq						
4.	Lattice d	esign for the 30 GeV Sy	vnchrotron.				
5.	Conclusio	ns.					
	Reference	8					
	Appendix						
۵.	(A) Extr	action system for the u	nequal drift lattic	ce.			
>			•				
1							
	5						
					0		
				20			

1

÷

TRIUMF	4004 WESBROOK N	ALL, UBC CAMPUS, V	ANCOUVER, B.C. V6	T 2A3
DESIGN NOTE	NAME Ramesh C. Gupta	Date December 1983	FILE NO. TRI-DN-83-51	PAGE 3
SUBJECT Methods of De	signing a Synchrotron La	ttice with High Ene	rgy Transition Ene	rgy

1. Introduction

In most proton synchrotrons the energy of the particles crosses a value, known as transition energy E_t , at which there is no phase stability. In high current synchrotrons the beam loss near the transition energy due to space charge defocusing forces and beam instabilities becomes important. A way to circumvent this problem is to design a synchrotron lattice in such a way that E_t stays out of the energy range of the machine. In this report we describe methods of designing such a lattice.

For the TRIUMF Kaon factory a 30 GeV, 100 μ A synchrotron¹) consisting of CERN/ISR magnets has been proposed. A regular lattice with E_t in the range of acceleration is given in fig. 1. It was suggested by H.G. Hereward²) to design the lattice for this machine with high E_t, employing a set of trim quadrupoles. In this report several possible lattices using different methods for achieving high E_t are described. The present lattice for this proposal is explained in more detail. It provides many long drift spaces by rearranging the dipole spacing and thus eliminates the need for additional quadrupoles or straight sections³). The lattice code DIMAT¹⁵) of R. Servranckx has been extensively used for this work; this code computes the lattice functions and particle trajectories in a circular machine using a second order matrix formalism.

2. Theory

In section 2.1 we investigate problems at the transition energy in a high current synchrotron and explain the need for designing a high transition energy lattice for the TRIUMF Kaon Factory Synchrotron. In section 2.2 we briefly review the theory of strong focusing synchrotrons given by Courant and Snyder⁴), especially regarding the derivation of the expressions for the transition energy. In section 2.3 we discuss the basic principle of changing the transition energy and in section 2.4 we examine the effects on the lattice functions.

2.1 Phase Stability and Transition Energy

In synchrotrons the acceleration of particles having a nonsynchronous energy or a nonsynchronous phase is possible due to the mechanism of phase stability⁵,⁶), provided that the deviations in energy and phase are not too large. Consider the difference $\Delta \tau$ in the revolution period τ due to a difference ΔC in orbit circumference C and Δv in velocity v between a nonsynchronous particle with momentum p+ Δp and synchronous particle with momentum p:

$$\frac{\Delta \tau}{\tau} = \frac{\Delta C}{C} - \frac{\Delta v}{v}$$

The momentum compaction factor α is defined as the relative change in circumference due to a relative change in momentum:

$$\alpha = \frac{\Delta C/C}{\Delta p/p}$$

BP 81-411

TRIUMF	4004 WESBROOK MA	4004 WESBROOK MALL, UBC CAMPUS, VANCOUVER, B.C. V6T 2A3									
DESIGN NOTE	NAME Ramesh C. Gupta	December 1983	FILE NO. TRI-DN-83-51	PAGE 4							
SUBJECT Methods of Desi	igning a Synchrotron Lat	tice with High Ene	rgy Transition Ene	rgy							

Using this and

$$\frac{\Delta v}{v} = \frac{1}{\gamma^2} \quad \frac{\Delta p}{p}$$

where $\gamma = E/E_0$ with E_0 the rest energy, one obtains

$$\frac{\Delta \tau}{\tau} = (\alpha - \frac{1}{\gamma^2}) \frac{\Delta p}{p} \equiv \eta \frac{\Delta p}{p},$$

thus defining the quantity n.

In most strong focusing proton synchrotrons (see Eq. (13) below) α has a value such that η increases from negative to positive during acceleration. The energy at which η becomes 0 is called the transition energy $E_t = E_0 \gamma_t$ and $\gamma_t = 1/\sqrt{\alpha}$.

The quantity η , which gives the connection between momentum and phase errors, is directly proportional to the strength of phase focusing. Below transition energy $\eta < 0$ and phase stability (focusing) exists if the synchronous phase is chosen on the rising side of the RF voltage curve. Above transition η is positive and phase stability can be restored again if the synchronous phase is shifted towards the falling side of the RF voltage curve. At transition energy $\eta = 0$, meaning no phase focusing to keep the bunch compressed. However $|\eta|$ also determines the bunch length which is shortest when $\eta = 0$.

In low current synchrotrons the change in RF phase causes almost no beam loss since the bunch is shortest at transition and the time required for the phase change is very small w.r.t. the time scale of phase oscillations. However, in a high current synchrotron the situation becomes different due to

- (a) space charge defocusing forces (maximum at transition when the bunch is shortest), disturbing the bunch length,
- (b) space charge forces enhancing beam instabilities at transition;

Thus beam loss may become important.

These problems become significant at beam intensities about 1% of those under consideration for a TRIUMF Kaon factory. At the CERN PS a sophisticated γ_t -jump scheme has been implemented⁷) to allow 3 × 10¹³ ppp to be accelerated through transition. For TRIUMF's aim of 6 × 10¹⁴ ppp, however, it seemed desirable to design a lattice with γ_t outside the acceleration range, if possible.

TRIUMF	4004 WESBROOK MA	LL, UBC CAMPUS, VA	NCOUVER, B.C. V6	Г 2АЗ					
DESIGN NOTE	NAME Ramesh C. Gupta	December 1983	FILE NO. TRI-DN-83-51	page 5					
SUBJECT Methods of Desi	gning a Synchrotron Latt	ice with High Ener	gy Transition Ene	rgy					
2.2 <u>Review of the theory of strong focusing synchrotrons</u> The equation of horizontal motion for charged particles with momentum $p + \Delta p$ in a static magnetic field is given by									
$\frac{d^2x}{ds^2} + \begin{bmatrix} \frac{1}{2} \\ \rho(s) \end{bmatrix}$	$K(S) = \frac{1}{\rho(s)} \frac{\Delta p}{p} $		2	(1)					
The path variable s deviation from the e deviation for the pa	runs from 0 to C (the ci quilibrium orbit. The c rticle with Δp/p =1	rcumference of the lispersion function	e machine) and x i n n _x represents th	s the e					
or $\eta_{\mathbf{x}} = \frac{\mathbf{x}}{\Delta p/p}$	•			(2)					
Furthermore ρ is the orbit and these vari	bending radius and K th ables satisfy the period	e focusing strengt licity conditions:	h on the equilibr	ium					
$\rho(s + C) = \rho(K(s + C)) = K(s + C)$	s), s).								
In addition if the m	achine is constructed of	n identical sect	lons then	11-24 11-24					
$\rho(s + C/n) = K(s + C/n) =$	ρ(s), K(s),			(3)					
is also satisfied. period consisting of expressed in the for	These sections may eithe several cells. The sol m of the so called Twiss	er be individual ma ution of eq. (1) d matrix M	agnet cells, or a for $\Delta p = 0$ then ma	super- y be					
$\left(\begin{array}{c} \mathbf{x(s)} \\ \mathbf{x'(s)} \end{array} \right) = \mathbf{M} \left(\begin{array}{c} \end{array} \right)$	x(0) x'(0)		à						
where $x' \equiv dx/ds$ and									
$M(s) = \begin{pmatrix} \cos \mu \\ -\gamma si \end{pmatrix}$	+αsinμ βsi nμ cos	$\mu - \alpha \sin \mu$,		(4) **					
where $\beta(s)$ is the enphase advance. The $\pi \epsilon$ is the horizontal	velope function, $\alpha = -\beta^{\alpha}$ particles with momentum emittance.	$\frac{1}{2}$, $\gamma = (1+\gamma^2)/\beta$ at p can have a maxim	and μ(s) = ∫ ^S _O ds/β num displacement √	<u>i</u> s the βε where					
To solve the inhomog	enous equation (∆p≠0) we	e first apply the l	Floquet transforms	tion:					

 $\xi = \beta^{-1/2} \mathbf{x},$ $d\phi = \frac{ds}{\nu\beta},$

8P81-411

(5)

÷

TRIUMF4004 WESBROOK MALL, UBC CAMPUS, VANCOUVER, B.C. V6T 2A3DESIGN NOTENoteRamesh C. GuptaData December 1983
$$Ta(LK_{\infty})$$
Gubted?Wethods of Designing a Synchrotron Lattice with High Energy Transition Energywhere ϕ is the normalized phase advance (2 π in one complete orbit), v is the betatron tune and $u = v\phi$ and Eq. (1) transforms to $\frac{d^2r}{d\phi^2} + v^2 \xi = v^2 \frac{\beta^2/2}{\rho} \frac{\Delta p}{p}$.(6)This equation can be solved by expanding $\beta^{3/2}/\rho$ in a fourier series: $\frac{\beta^2/2}{\rho} = \sum_{k=-\infty}^{\infty} a_k e^{-1k\phi}$,(7)with $a_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\beta^{3/2}}{\rho} e^{-ik\phi} d\phi$;(8)one obtains $\xi = \Delta p$ $v^2 \sum_{k=0}^{k-\frac{k}{p}} \frac{a_k}{v^2 - k^2}$.Therefore the change in circumference ΔC for the off momentum particle is $\Delta C = \int_0^{C} x \ d s = \int_{-\pi}^{\pi} \frac{\beta^{3/2}}{\rho} \xi d\phi = 2\pi v^3 \frac{\Delta p}{p} \frac{1}{k} \frac{\sqrt{2}}{\sqrt{2} - k^2}$.Using the definition of compaction factor (section 2.1) one obtains $\alpha = \frac{v^3}{\sqrt{2}} \sum_{p=1}^{14k^2} 1$,(11)where R is the average radius of the machine with $C = 2\pi R$.In most synchrotron designs the leading term is the one with $k = 0$. Using the approximation that β can be replaced by its average value (R/v) in eq. (8) $\alpha = \frac{1}{\sqrt{2}}$. $\alpha = \frac{1}{\sqrt{2}}$.(12)Therefore in most synchrotron designs $\alpha = \frac{1}{\sqrt{2}}$. $\alpha = \frac{1}{\sqrt{2}}$.(13)Since $\gamma_t = 1/\sqrt{\alpha}$, the harmonic $k = 0$ gives $\gamma_t = v$.(14)If instead there is an additional major contribution from the harmonic $k = n$ (and therefore also from $k = -n$) then

4

ж × 2

12

8P81411

	5 60 M			
TRIUMF	4004 WESBROOK M	ALL, UBC CAMPUS, VA	NCOUVER, B.C. VE	6T 2A3
DESIGN NOTE	Ramesh C. Gupta	December 1983	TRI-DN-83-51	PAGE 7
TRIUMF4004 WESBROOK MALL, UBC CAMPUS, VANCOUVER, B.C. V6T 2A3DESIGN NOTENAMERamesh C. GuptaDate December 1983FILENO TRI-DN-83-51FAGE 7SUBJECTMethods of Designing a Synchrotron Lattice with High Energy Transition EnergyImage: Comparison of the transition EnergyImage: Comparison of the transition Energy $\frac{1}{\gamma_L^2} = \frac{1}{\nu^2} \left[1 + 2 a_n^2 \frac{\nu^3}{R} \frac{\nu^2}{\nu^2 - n^2} \right]$,(15)neglecting the contributions from other harmonic components. The factor 2 takes care of the contributions from $ a_n $ and $ a_{-n} $.(15)To compute a_n due to errors $k(s)$ in the field gradients we quote the following results of Courant and Snyder.(16)Defining $J_n = \int_0^C \beta(s) k(s) e^{-in\phi} ds$,(16)the fractional change in $\beta(s)$ is given by $\Delta \beta = -\frac{\nu}{4\pi} \sum_{n=-\infty}^{\infty} \frac{J_n e^{in\phi}}{\sqrt{2} - (n/2)^2}$.(17)Using the modified beta function in eq. (8) $a_n = -\frac{3\nu}{2\pi} \frac{J_n}{4\nu^2 - n^2} \left(\frac{R}{\nu^3}\right)^{1/2}$.(18)2.3 Principle of changing the transition energy is to make a lattice of periodicity n and create a harmonic component a_n . A small value of an will bring a large change in γ_T from the unperturbed $(a_n = 0)$ value $\gamma_T = \nu$ if n is close to ν , (eq.(15). This implies that the phase advance of each of n superperiods is close to 2π . To increase γ_r , n should be just above ν and to decrease it just below. If $\nu < n$ and the homentum compaction factor may even become				
$\frac{1}{\gamma_t^2} \approx \frac{1}{\nu^2} \left[1 + \frac{1}{\nu^2} \right]$	$2 a_n^2 \frac{\nu^3}{R} \frac{\nu^2}{\nu^2 - n^2}],$	590) 54		(15)
neglecting the contr of the contributions	ibutions from other har from $ a_n $ and $ a_{-n} $.	monic components.	The factor 2 take	es care
To compute a _n due to results of Courant a	errors k(s) in the fie and Snyder.	ld gradients we quo	ote the following	. 1
Defining $J_n = \int_0^c \beta(s)$	$k(s) e^{-in\phi} ds$,			(16)
the fractional chang	ge in $\beta(s)$ is given by	-		
$\frac{\Delta B}{\beta} = -\frac{\nu}{4\pi} \sum_{r}$	$\int_{n-\infty}^{\infty} \frac{J_{ne}in\phi}{v^2 - (n/2)^2}$	2	2	(17)
Jsing the modified b	oeta function in eq. (8)	Ð		
$a_{n} \simeq -\frac{3\nu}{2\pi} \frac{4\nu}{4\nu}$	$\frac{J_n}{\nu^2 - n^2} \left(\frac{R}{\nu^3}\right)^{1/2} \cdot$			(18)
2.3 Principle of	changing the transition	energy		
The basic principle city n and create a change in γ_t from th (15)). This implies To increase γ_t , n sh the harmonic is stro negative taking γ_t 1	of changing the transit harmonic component a_n . he unperturbed $(a_n = 0)$ is that the phase advance hould be just above v and ong enough then the mome to an imaginary value.	ion energy is to m A small value of v value $\gamma_t \approx v$ if n of each of n supe d to decrease it ju entum compaction fa	ake a lattice of an will bring a la is close to v, (ea rperiods is close ust below. If v ctor may even bec	periodi- arge q. to 2π. < n and ome
		1	ant control huto of	anifi-

The natural harmonic present due to the number of cells does not contribute significantly to γ_t since usually the tune of the machine is far away from this number.

It may be seen from eq. (8) that in order to generate an additional harmonic coefficient a_n , one has to modulate either β or $1/\rho$ or both. We shall go into more details of this in chapter 3.

2.4 Effects of changing transition energy on the lattice functions

In this section we shall examine the effects of various methods of changing transition energy on the lattice functions. A convenient measure to estimate the increase in the peak values of lattice functions is obtained when the magnitude of the harmonic is adjusted to bring α to zero. The value of $|a_n|$, from eq. (15), in that case will be

TRIUMF		4004 WESBROOK MALL, UBC CAMPUS, VANCOUVER, B.C. V6T 2A3											
DESIGN NOTE	NAME	Ramesh C. Gupta	December 1983	FILE NO. TRI-DN-83-51	PAGE 8								

SUBJECT Methods of Designing a Synchrotron Lattice with High Energy Transition Energy

$$a_{n} = \frac{1}{\sqrt{2}} \left(\frac{R}{v^{3}} \right)^{1/2} \frac{|v^{2} - n^{2}|^{1/2}}{v} .$$
(19)

First we compute the change in the maximum value of beta function caused by the introduction of the harmonic modulations of periodicity n. This modulation, as a result, creates harmonics of order k = 0, n, 2n, 3n ... Therefore on expanding eq. (17), we obtain

$$\frac{\Delta\beta}{\beta} = -\frac{J_{0}}{4\pi\nu} + \frac{2\nu}{\pi} \frac{J_{n}}{4\nu^{2} - n^{2}} e^{in\phi} + \frac{2\nu}{\pi} \frac{J_{2n}}{4(\nu^{2} - n^{2})} e^{2in\phi} + \frac{2\nu}{\pi} \frac{J_{3n}}{4\nu^{2} - 9n^{2}} e^{3in\phi} + \dots \quad (20)$$

Since v is close to n it is important to make J_{2n} zero to avoid a large change in β . Therefore, assuming that J_{2n} is zero and that the magnitude of harmonics other than k = n is small, one obtains using eq. (18), (19) and (20)

$$\frac{\Delta B}{\beta} = \frac{2\sqrt{2}}{3\nu} (\nu^2 - n^2)^{1/2}$$
(21)

which shows that β will have a higher peak value unless ν is close to n.

The beta functions and tunes will change in only those schemes which involve the modulation of the focusing properties of the lattice. However, an unavoidable effect of changing γ_t , in any scheme, is the increase in the peak values (maximum and minimum) of the dispersion function η_X . In the presence of the harmonic components a_0 and a_n (and therefore a_{-n}) only one obtains from eq. (2), (5), (9) and (12)

$$\eta_{x} = \left(\frac{\beta R}{\nu^{3}}\right)^{1/2} + \beta^{1/2} \frac{\nu^{2}}{\nu^{2} - n^{2}} \quad (a_{n} e^{in\phi} + a_{-n} e^{-in\phi}).$$
(22)

while the original value of η_x when γ_t was not raised ($a_n = 0$) was given by

$$\eta_{x0} = \left(\frac{\beta_0 R}{\nu^3}\right)^{1/2},$$
(23)

with β_0 the value of the beta function in that lattice.

BP81-411

Equations (21) to (23) give the fractional change in the peak values of the dispersion function.

$$\frac{\Delta n_{\mathbf{x}}}{n_{\mathbf{x}O}} = \pm \frac{\nu}{|\nu^2 - n^2|^{1/2}} \left(\frac{2\beta}{\beta_O}\right)^{1/2} + \left[1 - \left(\frac{\beta}{\beta_O}\right)^{1/2}\right]$$
$$\approx \pm \frac{\sqrt{2}\nu}{|\nu^2 - n^2|^{1/2}}$$
(24)

neglecting the change in β (eq. (21)). The equation again exhibits the need of staying away from $\nu = n$ to avoid the large peak values of the dispersion functions.

TRIUMF	4004 WESBROOK MA	LL, UBC CAMPUS, VA	ANCOUVER, B.C. V6T	2A3
DESIGN NOTE	Ramesh C. Gupta	December 1983	FILE NO. TRI-DN-83-51	page 9
SUBJECT Methods of Desi	gning a Synchrotron Latt	ice with High Ener	rgy Transition Ener	зу

Thus we see that to avoid higher β , ν should be close to n (eq. (20)) and to avoid higher n_X (eq. (24)) ν should be away from n. Therefore a suitable value of ν/n should be chosen to make a proper compromise:

The change in tune v can be computed by using eq. (4.35) to eq. (4.37) of Courant and Snyder⁴).

3. Methods to design a high transition energy lattice

In this chapter we look at ways of creating the harmonic component responsible for producing high transition energy in a lattice. It is presumed that ν is close to but less than n unless otherwise mentioned. It may be recalled that for obtaining the harmonic coefficient a_n one has to modulate either β (the focusing properties) or $1/\rho$ (the bending properties) or both. We divide all methods in three basic approach and discuss a few possible variations in these approaches in the relevant sections.

3.1 Reverse field magnets

The first published proposal⁸) for a high transition energy lattice was based on using a number of reverse field magnets. These magnets have the same field index but they bend in the opposite direction giving $1/\rho$ a negative value. This generates a harmonic coefficient due to the variation in $1/\rho$. The obvious disadvantage of this scheme lies with the considerable increase in circumference. In the Serphukov synchrotron for which this method was proposed, approximately an extra 25% magnet length was required.

3.2 Pairs of trim quadrupoles

In this method a pair of focusing (F) and defocusing (D) quadrupoles is used in each superperiod to modulate the beta function. The F and D quads are placed at about a phase of π apart and a small difference in β around the two quads generates the desired harmonic. A detailed analysis of the scheme has been made by Ohnuma⁹), Teng¹⁰,¹¹) and also by Hardt^{/)} using a somewhat different approach. The method has also been used in the proposed lattice for SIS 12/18¹²). Ohnuma treats the trim quadrupoles as an error in field gradients and obtains

$$\frac{1}{\gamma_{t}^{2}} \approx \frac{1}{\nu^{2}} \left[1 + \frac{9\nu^{4}}{2\pi^{2}} \sum_{k>0} \frac{|J_{k}|^{2}}{(\nu^{2} - k^{2})(4\nu^{2} - k^{2})^{2}} \right],$$
(28)

where J_k has been defined in eq. (16).

It appears from this equation that the component J_n with $n \approx 2\nu$ will be more effective in bringing a large change in γ_t than J_n with $n \approx \nu$. But eq. (17) indicates that if $n \approx 2\nu$ the change in β will be very large and therefore in that case this equation and the above expression for γ_t will no longer be valid. We found that it was practically impossible to change γ_t by a very large amount using this component only.

TRIUMF	4004 WESBROOK MA	4004 WESBROOK MALL, UBC CAMPUS, VANCOUVER, B.C. V6T 2A3											
DESIGN NOTE	NAME Ramesh C. Gupta	Date December 1983	FILE NO. TRI-DN-83-51	page 10									
SUBJECT Methods of Desi	igning a Synchrotron Lat	tice with High Ene	rgy Transition Ene	rgy									

The above component ($n \approx 2\nu$) in fact should be avoided in the lattice to keep the maximum beta low. We use an unequal excitation of the trim quads to eliminate this component. If the strength of the two trim quads (F and D) are $k + \delta k$ and $-k + \delta k$ then k contributes mainly for J_n and δk to J_{2n} . The magnitude of the inequality in the excitation of the two trim quads may be used as a fitting variable to keep β almost unchanged at the point exactly in between the two quads.

In a first lattice design¹) for the TRIUMF Kaon factory this method was used with $v \approx$ n for taking γ_t to ~ 35 with maximum beta (both β_x and β_y) ~ 40 m. However, this lattice had an inherent n $\approx 2 v$ harmonic. By an unequal excitation of trim quads both β_x and β_y were made < 32 m while raising γ_t to an imaginary value. The maximum β in the same lattice with no excitation of trim quads was about 30 m.

Probably the most straightforward way to modulate β functions in a lattice is to modulate the strength of main quadrupoles themselves. This changes γ_t without increasing the total length of quadrupoles in the machine (a relatively small increase in strength may be required to compensate the small change in ν). A lattice based on this scheme is given in fig. 2. The length of all four horizontally focusing quads in a lattice with $\gamma_t \approx \nu$ was 1.7 m. To increase γ_t to an imaginary value the length of two of these quads (which are approximately π phase apart) may be changed to 1.4 m and 2.0 m respectively. However, in the lattice of fig. 2 the lengths are changed to 1.45 m and 1.98 m respectively to suppress J_{2n} , as mentioned earlier. The maximum magnetic field in the magnet is 1.65 T and in the quad 1.2 T. The length of all magnets is 2 m and of drifts 0.5 m.

3.3 Modulation of the magnet distribution

In this section we discuss the methods of modulating $1/\rho$ without using the reverse field magnets. In part (a) the missing magnet cells method is discussed for modulating $1/\rho$ without affecting the beta functions. This method has been used for the SATURNE II¹³) lattice and for a 3 GeV booster at TRIUMF. In part (b) we combine the modulation in β to $1/\rho$ to increase the magnitude of the harmonic coefficient $|a_n|$.

3.3(a) Missing magnet cells

The harmonic component a_n due to $1/\rho$ variation can be generated by making a lattice in such a way that a relatively long section with no magnets is created around one place in each of n superperiods.

We consider an example in which a superperiod is made of p cells of which e are empty (no magnets, $1/\rho = 0$). We obtain approximate expressions for γ_t and other quantities. Making an approximation in eq. (8) by replacing β by its average value R/ν we obtain

$$a_{n} \simeq \frac{1}{2\pi} \left(\frac{R}{\nu} \right)^{3/2} \int_{-\pi}^{\pi} \frac{1}{\rho} e^{-in\phi} d\phi = \frac{n}{2\pi} \left(\frac{R}{\nu} \right)^{3/2} \int_{-\pi/n}^{\pi/n} \frac{1}{\rho} e^{-in\phi} d\phi,$$

since we have n superperiods. If the superperiod has a reflection symmetry about the origin

TRIUMF	4004 WESBROOK MA	4004 WESBROOK MALL, UBC CAMPUS, VANCOUVER, B.C. V6T 2A3										
DESIGN NOTE	Ramesh C. Gupta	Ramesh C. Gupta December 1983 FILE NO. TRI-DN-83-51										
SUBJECT Methods of Desi	gning a Synchrotron Latt	ice with High Ener	gy Transition Ener	ву								

$$a_{n} \simeq \frac{n}{\pi} \left(\frac{R}{\nu}\right)^{3/2} \int_{0}^{\pi/n} \frac{1}{\rho} \cos n\phi \ d\phi = \frac{1}{\pi} \left(\frac{R}{\nu}\right)^{3/2} \int_{0}^{\pi} \frac{1}{\rho} \cos \zeta d\zeta,$$

where the new variable $\zeta = n\phi$ ranges from $-\pi$ to π in a superperiod. $1/\rho$ is zero in the empty cells and we can put approximately $R/\rho = p/(p-e)$ in the cells with magnets and obtain

$$a \simeq -\frac{\sin(\pi e/p)}{\pi} \frac{R}{\nu^3} \frac{1/2}{p-e}$$
 (29)

The actual circumference factor should be used for R/ρ if the lattice is not tightly packed.

Replacing an by this value in (15)

$$\frac{1}{\gamma_{t}^{2}} \simeq \frac{1}{\nu^{2}} \left[1 + 2 \frac{\sin^{2} (\pi e/p)}{\pi^{2}} \left(\frac{p}{p-e} \right)^{2} \frac{\nu^{2}}{\nu^{2}-n^{2}} \right],$$
(30)

and similarly in (19)

$$n_{x}(\phi) = \left(\frac{\beta R}{\nu^{3}}\right)^{1/2} \left[1 - 2 \frac{\sin(\pi e/p)}{\pi} \left(\frac{p}{p-e}\right) \frac{\nu^{2}}{\nu^{2}-n^{2}} \cos n\phi\right]$$
(31)

These approximate expressions predict results quite close to the values given by the computer code DIMAT¹⁵), particularly when the cells with the magnets are tightly filled. A lattice based on this scheme is given in fig. 3 where one of the four cells is empty; the number of superperiods is 12 and v_x is 10.9143. The maximum magnetic field used in the magnets is 1.75 T and in quads 1.2 T. The lengths of all magnets is 2.5 m and of quads 1.5 m. The drift space between the quad and magnet is 0.5 m and between two magnets 0.3 m. In fig. 4 values of γ_t and n_x predicted by eq. (30) and eq. (31) are compared with those given by DIMAT. The variable on the x-axis is v_x/n which is varied by changing the strength of the quads in the lattice of fig. 3. The empty cell can center either around an F quad or a D quad. The maximum value of n_x in the magnets is lower if it is around an F quad.

3.3 (b) Unequal Drift Lattice

The modulation in $1/\rho$ can also be obtained by modulating the strength or the distribution of the bending fields. This, for example, may be achieved by shifting the magnets in such a way that they get crowded around one point and get further away from another point (which is about π phase away from the first).

In a combined function machine the shift of the magnets causes a modulation in β as well. These two modulations (β and $1/\rho$) can be used together to get a higher value of the fourier coefficient a_n . An example of this scheme is given in fig. 10 and is explained in detail in chapter 4.

TRIUMF	4004 WESBROOK M	ALL, UBC CAMPUS, V	ANCOUVER, B.C. V6	T 2A3
DESIGN NOTE	NAME Ramesh C. Gupta	December 1983	FILE NO. TRI-DN-83-51	PAGE 12
UBJECT Methods of De	signing a Synchrotron Lat	tice with High Ene	rgy Transition Ene	ergy

The scheme of using the two modulations (β and $1/\rho$) can obviously be employed more efficiently in a separated function machine to obtain high γ_t with modest peak values of β_x , β_y and η_x . On the other hand this approach can also be utilized in making a compact dispersion suppressor for the lattices of high η_x . In one example we were able to bring $\eta_x = 5.7$ m to zero by using a half empty cell and the modulation in the quad strength.

4. Lattice design for the 30 GeV Synchrotron

In this section we describe a lattice for the proposed 30 GeV synchrotron. We explain how the desired harmonic for the high transition energy is created and how various parameters are optimized.

The regular lattice (all drifts equal, $\gamma_t \simeq \nu$) and the plot of its lattice functions are shown in fig. 1. This lattice is constructed of the so called long F and long D blocks with each long block consisting of two identical magnets HFL or HDL. In these long blocks the two magnets have a common coil and therefore the separation between the two is fixed. However, in the short blocks, HFS or HDS, each magnet has a separate coil and therefore the separation between the two HFS or HDS can be varied.

The regular lattice has 48 cells and each cell has a phase advance close to but below $\pi/2$. For a high γ_t lattice we take a superperiod of four basic FODO cells and shift the magnets to produce

1 ↓ F	0	0	D	0	F	0	0	D	0	2 ↓ F	0	D	0	0	F	0	D	0	0	
						_							_	_				_		

+ + + + + + + + a b c d d c b a

where a single 0 represents a short drift (S) and two 0's, a long drift (L), and where 1 and 2 are the two reflection symmetry points. The magnets are shifted symmetrically away from 1 and towards 2, thus modulating both the bending and the focusing properties of the lattice.

It can be seen from eq. (8) that to obtain a high harmonic coefficient $|a_n|$, both $\beta^{3/2}$ and $1/\rho$ should be high around 2 and low around 1 (or vice versa). In the above structure decreasing the length of drifts d increases the magnet density around 2, making $1/\rho$ higher; conversely increasing drifts a makes magnet density and $1/\rho$ lower around 1. It may also be noticed that the short drifts d increase the defocusing (or decrease the focusing) around 2 (by bringing the D magnets closer to it) and thereby make $\beta^{3/2}$ higher; conversely the longer drifts a make $\beta^{3/2}$ lower around 1. Thus for designing a high transition energy lattice in this scheme, the drifts a should be longer and d shorter. Also the F magnets should be at the symmetry points; D magnets at the symmetry points will change $\beta^{3/2}$ and $1/\rho$ in opposite senses. One may find

	TRIUMF	4004 WESBROOK MALL, UBC CAMPUS, VANCOUVER, B.C. V6T 2A3							
	DESIGN NOTE	NAME	Ramesh C. Gupta	DATE December 1983	FILE NO. TRI-DN-83-51	PAGE 13			
SUBJ	SUBJECT Methods of Designing a Synchrotron Lattice with High Energy Transition Energy								

several possible combinations of the four drifts "a b c d" satisfying this requirement; some of the drift patterns for them are:

"LSLS", "LLSS", "LMMS", etc.

Here S, M and L stand for short, medium and long drifts, M being taken equal to the drift length of the regular lattice. The variation of γ_t with (L-S) between these patterns is shown in fig. 5.

These changes in the lattice structure also cause changes in the tunes and in the lattice functions. In fig. 5 v_x and $\hat{\eta}_x$ are also plotted (together with γ_t) against (L-S). The variation of v_x with (L-S) is different in these patterns, it decreases in pattern LSLS but increases in LMMS and LLSS, more rapidly in LLSS. This difference is important due to the presence of the factor $1/(v^2-n^2)$ in the expressions for γ_t and $\hat{\eta}_x$ (eq. (15 and (22)) and especially where v is close to n. The decrease in v with increasing (L-S) in pattern LSLS becomes so large that despite an increasing $|a_n|$, $\hat{\eta}_x$ eventually decreases. However, γ_t continues to increase because the factor $1/(v^2-n^2)$ is multiplied by $|a_n^2|$ in the expression of γ_t (whereas it is multiplied by a_n in the expression for $\hat{\eta}_x$). In fig. 6 $\hat{\beta}_x$ and $\hat{\beta}_y$ are plotted against (L-S) for these patterns.

Figure 7 shows the effect of an increase in the drift b and a decrease in c starting with pattern LSLS. This changes the pattern to LMMS and eventually to LLSS. The behavior of γ_t , β_x , β_y , η_x , ν_x and ν_y against (c-b) is plotted in this figure for the fixed value of (a-d) = 3 m. The variation of γ_t and η_x in terms of a_n and ν_x has been explained above. The increase in the peak value of β_x (β_y) is associated with the J_{nx} and ν_x (J_{ny} and ν_y) as given in eq. (17). The major contributing harmonics are those of n close to ν and 2ν (in our case 12th and 24th harmonics). In the table below we give very approximate values of J_{12} and J_{24} in horizontal and vertical planes. They are computed under the assumption that the gradients of all combined function magnets can be substituted for the gradient errors in the calculation of 12th and 24th harmonic in eq. (16). We have also used β of the modified lattice instead of that of a regular lattice. The values of a_{12} and a_{24} are also given in this table. They are computed using eq. (8).

T o	ъ	1	~	1
1a	D	т	е.	_ L

S.No.	(c-b)	a ₁₂	J _{12x}	J _{12y}	a ₂₄	^J 24 x	J ₂₄ y
	(m)	(m ^{1/2})	(m) .	(m)	(m ^{1/2})	(m)	(m)
1	-3	-0.092	-95	185	0.008	20	-18
2	-2	-0.078	-60	166	0.01	33	-86
3	-1	-0.069	-18	157	0.033	102	-38
4	0	-0.067	47	183	0.069	257	130
5	1	-0.067	169	296	0.149	563	438
6	2	-0.062	549	709	0.338	1461	1210

BP 81-411

TRIUMF	4004 WESBROOK MA	LL, UBC CAMPUS, VA	NCOUVER, B.C. V6T	2A3
DESIGN NOTE	Ramesh C. Gupta	December 1983	TRI-DN-83-51	page 14
SUBJECT Methods of Desig	gning a Synchrotron Latt	ice with High Ener	gy Transition Ener	ву
11		70		
For β to be low both 7 that β is low when	J_{12} and J_{24} (more imported both 12th and 24th harm	tant J ₂₄) should b nonics are small.	e small. We see i	n fig.
The harmonic modulat: the first long drift variation on various	lon in l/p in structure a and decreasing anothe parameters is shown in	LSLS can be furthe r long drift c. T fig. 8.	er augmented by inc The effect of this	reasing
For the main ring sta every half superperio present lattice is a modification was done functions. The layor plotted in fig. 10.	ructure LSLS is preferre od (24 in full machine) ctually a slightly modif e to obtain high enough ut of this lattice is sh The parameter list is g	ed because (a) it g (b) it has the low fied version of LSL γ_t and also to fur nown in fig. 9 and given in Table 2.	tives 2 long drifts rest β_x and n_x . The Stype. This ther optimize the the lattice function	in e lattice ons are
a.	Tabl	Le 2		
Parameter list for t	he 30 GeV Main Ring			
1. <u>Machine Struc</u>	ture Parameters	2 -		
List of machine comp	onents in one superperio	od:		
FDR1 HFL FD11 FDR1 HFL FD33 FDR1 HFL FD44 FDR1 HFL FD22	HDL FDR1 FDR1 HDL FD22 HDL FDR1 FDR1 HDL FD44 HDL FDR1 FDR1 HDL FD33 HDL FDR1 FDR1 HDL FD11	HFL FDR1 HFL FDR1 HFL FDR1 HFL FDR1		
(where the electric the magnets.	ements whose name begins Values of length, etc.	s with F are the dr of these elements	ift spaces and wit are given below).	h H are
Circumference		: 826.87 meter	-	
<pre># Superperiod: # Cells</pre>	5	48		
# Magnets		: 192	· · ·	
Maximum magne	tic field in the magnet	: 1.35 Tesla		а. Т
Length, bend	angle and the field inde	ex of the magnets:	14 140	4
Magnet Ef	fective length (m)	Bend angle (deg)	Field index	n
HFL	2.5109	1.88145	-229.3925	
HDL	2.4856	1.86855	218./433	

BP61-411

	RIUMF	4004	4 WESBROOK	MALL, UBC C	CAMPU	S, VANC	OUVER, B.C.	V6T 2A3
DESI	GN NOTE	Rame	esh C. Gupta	Decem	ber 19	83 FILI	TRI-DN-83-51	PAGE 15
UBJECT Met	hods of Desi	gning a Sy	ynchrotron L	attice with	High	Energy	Transition E	nergy
9								
I	length of the	drift spa	aces (m)					цій?
Ŧ	7D11 (=a)	:	5.6278		e:			
Ē	5D22 (=b)	1	2.3377			41 - 77		
F	TD33 (=c)	:	4.6378		34	7.1 (*		
F	ED44 (=d)	:	1.5477					
F	DR1	:	0.0395					
. E	Seam Dynamics	Paramete	rs					1
	Tomdoontol tu		10 98					-
E	IOTIZONLAL LUI	ne .	0.97					
	fertical Lune	:	30.5 m					
r	$1ax \cdot p_X$:	37.7 m					
r	lax. py		7.6 m		4			
	$\max \prod_{X}$		-4.2 m					
r	TTU• UX		4.2 W				- ē	
• E	Extraction Sys	stem Para	meter					
4	Kicker magn	ets :	2					
1	Septum magn	et :	1				E	
- 1	ength, Defle	ction and	the magneti	c field in	the ki	.cker a	nd the septum	n magnet
÷		Length	-	Deflec	tion	Ma	enetic field	
	licker	4.5 m		1.35 m	rad		.03 T	
V		3.5 m		17.5 π	rad		.5 T	
ŀ				2.00				
ł	Septum							
H Sonclust	lons							
H S Conclust	lons	odatna th	o transition	energy of	a lati	ice ha	ve been explo	ored and
ionclust	lons methods of r	aising the	e transition	n energy of	a lati	ice ha	ve been explo	ored and IMF Kaon
P Conclust Several The effe	methods of r	aising the attice fund	e transition nctions exame cFRN/ISE m	n energy of lined. For	a lati the ma	ice hat in ring with mo	ve been explo g of the TRIU odulated drif	ored and MF Kaon ft spaces
For the second s	methods of r ects on the lawith combined be the most	aising the attice fund function	e transition nctions exam n CERN/ISR m Ne one. It	n energy of nined. For nagnets a la eliminates	a lati the ma ttice	ice hat in ring with material	ve been explo g of the TRIU odulated drif extra straig	ored and IMF Kaon It spaces 2ht
everal he effe actory	ions methods of r ects on the la with combine be the most	aising the attice fun d function attraction	e transition nctions exam n CERN/ISR m ve one. It additional	n energy of hined. For hagnets a la eliminates trim quadru	a latt the ma ttice the ne	ice hat in ring with material	ve been explo g of the TRIU odulated drif extra straig	ored and JMF Kaon ft spaces ght
Several che effe factory seems to sections	ions methods of r ects on the la with combine be the most and does no	aising the attice fund d function attraction t require	e transition nctions exam n CERN/ISR m ve one. It additional	n energy of nined. For magnets a la eliminates trim quadru	a latt the ma ttice the ne poles	tice hain ring with m with for	ve been explo g of the TRIU odulated drif extra straig	ored and MF Kaon ft spaces ght
Econcluss Several the effectory seems to sections	ions methods of r ects on the 1. with combine be the most and does no	aising the attice function attraction t require	e transition nctions exam n CERN/ISR m ve one. It additional ne. particul	n energy of nined. For nagnets a la eliminates trim quadru larly for hi	a latt the ma ttice the ne poles	tice hat in ring with m eed for energy,	ve been explo g of the TRIU odulated drif extra straig a modulation	ored and MF Kaon It spaces ght n in
Econclust Several the effectory seems to sections In a sep	ions methods of r ects on the 1 with combine be the most and does no parated funct	aising the attice function attraction t require ion machi- seems to	e transition nctions exam n CERN/ISR m ve one. It additional ne, particul be the most	n energy of nined. For nagnets a la eliminates trim quadru larly for hi straightfor	a lati the ma ttice the ne poles gher e ward a	tice have the ring with model for energy, and apposite	ve been explo g of the TRIU odulated drif extra straig a modulation ealing method	ored and JMF Kaon ft spaces ght n in i. In a
Econclust Several the effectory seems to sections In a sep puadrupo	ions methods of r ects on the l with combine be the most and does no parated funct ble strength hergy machine	aising the attice function d function attraction t require ion machin seems to , the 3 G	e transition nctions exam n CERN/ISR m ve one. It additional ne, particul be the most eV Booster f	n energy of nined. For magnets a la eliminates trim quadru larly for hi straightfor for example.	a latt the ma ttice the ne poles obser of ward a the n	tice hain ring with model for energy, and apponissing	ve been explo g of the TRIU odulated drif extra straig a modulation ealing method magnet method	ored and MF Kaon Et spaces ght n in d. In a od couple
Econclust Several the effe Factory seems to sections In a sep juadrupo Lower en	ions methods of r ects on the 1 with combine be the most and does no parated funct ble strength hergy machine modulation in	aising the attice function attraction t require ion machin seems to , the 3 G quadrupo	e transition nctions exam n CERN/ISR m ve one. It additional ne, particul be the most eV Booster f le strength	n energy of nined. For magnets a la eliminates trim quadru larly for hi straightfor for example, may be more	a latt the ma ttice the ne poles gher e ward a the n suita	tice ha with m end for energy, and app missing able.	ve been explo g of the TRIU odulated drif extra straig a modulation ealing method magnet method	ored and MF Kaon Et spaces ght n in i. In a od couple
Econcluss Several the effectory seems to sections In a sep quadrupo lower en with a n	methods of r ects on the 1. with combine be the most and does no parated funct ble strength hergy machine modulation in	aising the attice function attraction t require ion machin seems to , the 3 G quadrupo	e transition nctions exam n CERN/ISR m ve one. It additional ne, particul be the most eV Booster f le strength	n energy of nined. For nagnets a la eliminates trim quadru larly for hi straightfor for example, may be more	a latt the ma ttice the ne poles gher of ward a the t suita	vith m energy, and appoints ing able.	ve been explo g of the TRIU odulated drif extra straig a modulation ealing method magnet method	ored and DMF Kaon It spaces ght in in d. In a od couple
Econclust Several the effectory seems to sections In a sep quadrupo lower en with a n	ions methods of r ects on the 1 with combine be the most and does no parated funct ble strength nergy machine modulation in the maximum	aising the attice function d function attraction t require ion machine seems to , the 3 G quadrupo value of	e transition nctions exam n CERN/ISR m ve one. It additional ne, particul be the most eV Booster f le strength the dispersi	n energy of nined. For nagnets a la eliminates trim quadru larly for hi straightfor for example, may be more lon function	a latt the ma ttice the ne poles gher e ward a the n suita	tice have in ring with me energy, and appenissing able.	ve been explo g of the TRIU odulated drif extra straig a modulation ealing method magnet method ber of superg	ored and DMF Kaon It spaces ght i in i. In a od couple periods
Econclust Several the effectory seems to sections In a sep quadrupo lower en with a n Co keep should n	ions methods of r ects on the 1 with combine b be the most and does no parated funct ble strength nergy machine modulation in the maximum not be too cl	aising the attice function attraction t require ion machines seems to , the 3 G quadrupo value of ose to the	e transition nctions exam n CERN/ISR m ve one. It additional ne, particul be the most eV Booster f le strength the dispersi e horizontal	n energy of nined. For magnets a la eliminates trim quadru larly for hi straightfor for example, may be more lon function tune of th	a latt the ma ttice the ne poles of ward a the n suita low f he mach	tice hain ring with model for energy, and appenissing able. the num	ve been explo g of the TRIU odulated drif extra straig a modulation ealing method magnet method ber of superg en if it requ	ored and MF Kaon Et spaces ght i. In a od couple periods nires a
everal he effe actory eems to ections in a sep uadrupo ower en dth a n co keep hould n igher n	ions methods of r ects on the l with combine be the most and does no parated funct ble strength nergy machine modulation in the maximum the maximum the too cl modulation.	aising the attice function attraction t require ion machin seems to , the 3 G quadrupo value of ose to the Though a	e transition nctions exam n CERN/ISR m ve one. It additional ne, particul be the most eV Booster i le strength the dispersi e horizontal proper choice	n energy of hined. For hagnets a la eliminates trim quadru larly for hi straightfor for example, may be more lon function tune of th ce will depe	a latt the ma ttice the ne poles of ward a the n suita a low f e mach end on	tice hain ring with mised for energy, and appointsing able. the num nine ev a part	ve been explo g of the TRIU odulated drif extra straig a modulation ealing method magnet method ber of superp en if it requ icular lattic	ored and MF Kaon ft spaces ght in in d. In a od couple periods nires a ce we fin

The harmonic component with v close to $r_{\sqrt{2}}$ must be suppressed to avoid an unnecessary increase in the maximum value of beta functions in the schemes involving a modulation in the focusing properties.

•	TRIUMF	4004 WESBROOK M	ALL, UBC CAMPUS, VA	ANCOUVER, B.C. V6	T 2A3
DE	SIGN NOTE	Ramesh C. Gupta	December 1983	FILE NO. TRI-DN-83-51	PAGE 17
BJECT	lethods of Desi	ening a Synchrotron Lat	tice with High Ene	rgy Transition Ene	ergy
				-65	
			.**		
erere	nces			₩6	
1.	Progress Repo Factory, June	rt on feasibility of us 1983.	ing the ISR magnet	s in a TRIUMF Kaor	a
2.	H.G. Hereward	, private communication	1, 1983.		
3.	R.C. Gupta, "	Straight Section Design	ns", TRI-DN-83-31.		
4.	E.D. Courant Annals of Phy	and H.S. Snyder, "Theor sics, vol. 3 (1958) 42.	ry of Alternating G	radient Synchrotro	on",
5.	V. Veksler, J	ournal of Physics 9 (19	945) 153.	9 ⁵ 2	
6	E.M. McMillan	, Physical Review 70 (1	.945) 69.		
7.	W. Hardt, "Ga International	mma Transition jump sch Conference, SLAC (1974	neme of the CPS", P) 434.	roceedings of IX	
8.	V.V. Vladimir USSR Academy	ski and E.K. Tarasov, " of Sciences, Moscow, 19	Problems of Cyclic	Particle Accelera	ators",
9.	S. Ohnuma, Fe (Also LA 9 1983).	rmilab p note No. 105, 511 - C; Proceedings c	Dec. 1980. of the workshop on	LAMPF II synchroti	ron,Jan
0.	L.C. Teng, NA	L, FN-207, April 1970.			
1.	L.C. Teng, NA	L, TM-276, Nov. 1970.	142		
.2.	B. Franczak, 2120.	K. Blasche, K.H. Reich,	Particle Accelera	tor Conference (19	983)
3.	J.L. Laclare,	SATURE, in MARIA desig	n symposium, Vol.	III, Edmonton (198	80) 55.
4.	R.C. Gupta "M TRI-DN-83-36.	ethods of Designing Syn	nchrotrons with Hig	h Transition Energ	ву",
5.	R. Servranckx note in summe	, " Lattice code DIMAT" r 1984.	. Userguide will	be available as a	SLAC P
	- ¹²	\$			
					5

•

34

.

TRIUMF 4004 WESBROOK MALL, UBC CAMPUS, VANCOUVER, B.C. V6T						
DESIGN NOTE	NAME Ramesh C. Gupta	DATE December 1983	FILE NO. TRI-DN-83-51	page 18		
SUBJECT			_			

Methods of Designing a Synchrotron Lattice with High Energy Transition Energy

Appendix A

BP 81-411

Extraction System for the unequal drift lattice

Here we briefly describe a fast extraction system which fits into the long drifts of the unequal drift lattice to take the beam out of the machine in a single turn.

The extraction system is designed for a beam of emittance 12.5π mm mrad and consists of two kicker magnets and one septum magnet. The maximum magnetic fields to be used in the kicker and in the septum magnets are respectively .03T and .5T. Both kickers are 4.5 m long and give the beam an outward deflection of 1.35 m rad. The second kicker is located about 2π phase advance apart from the first kicker and the combined deflection takes the whole beam to the other side of the septum magnet, which always stays out of the path of the circulating beam. When this beam arrives at the 3.5 m long septum, it already has a clear separation of 1 cm from the original circulating beam and gets an additional deflection of 17.5 m rad to get completely out of the synchrotron.

The extraction system is shown in fig. 11 where the envelopes for the deflected and the normal circulating beams have been plotted.

Fig. 1. Regular lattice consisting of CERN/ISR magnets. The transition energy is in the range of acceleration. (Ref. Ch. 1).

Fig. 2. Raising transition energy by modulating the quadrupole lengths. The length of the quadrupoles at the two symmetry points are respectively 1.98 m and 1.45. The compaction factor has become negative and $\gamma_{\rm t}$ imaginary. Length of all quads in a regular lattice will be 1.7 m. (Ref. Sec. 3.2).

Fig. 3. Raising transition energy using missing magnet cells. In this example one of the four cells is empty. $v_{\rm x}/n$ is .9095 and n, the no. of superperiods, is 12. (Ref. Sec. 3.3 (a)).

Fig. 4. Comparison of the dispersion and γ_t for the computed results using the formulas derived in Sec. 3.3 (a) and the results obtained from the lattice code DIMAT in the missing magnet cells method. (Ref. Sec. 3.3 (a)).

Ø

Fig. 5. Effects of increasing the difference between the long and the short drifts starting from a regular lattice. Patterns examined: l:LSLS, 2:LMMS and 3:LLSS (M = 3.5 m = drift length in a regular lattice). In this figure v_x , $\hat{\eta}_x$ and γ_t are shown (Ref. Ch. 4).

Fig. 6. Same as Fig. 5 but behaviour of $\hat{\beta}_x$ and $\hat{\beta}_y$ is shown. (Ref. Ch. 4).

Fig. 7. Beh

Behaviour of lattice functions:

Starting from the pattern LSLS (for drifts abcd), the difference between the drifts b and c is increased. It changes the pattern LSLS to LMMS (when b-c = 0 m) and eventually to LLSS (when b-c = 3m; however, the motion becomes unstable before that). (Ref. Ch. 4 and see also Table 1).

Fig. 8. The difference between the two long drifts a and c (in the pattern LSLS) is increased to enhance the modulation in $1/\rho$ to further increase γ_t . Ref. (Ch. 4)).

ONE SUPERPERIOD OF THE 30 GEV MAIN SYNCHROTRON

Fig. 9. Layout of one superperiod. A relatively higher magnet density is created at the mid-point. This provides the desired harmonic to increase γ_t , (see lattice below). There are 12 superperiods in the main synchrotron. (Ref. Ch. 4).

Fig. 10. A lattice optimized for high transition energy and low peak values of the lattice functions. A complete parameter list is given in Table 2. (Ref. Ch. 4).

Fig. 11. A fast extraction system for the main synchrotron. Long drifts of the unequal drift lattice of Fig. 10 have been utilized for placing the two kickers and one septum magnet. (Ref. Appendix A).