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Abstract

In this report varlous methods of designing a synchrotron lattice with high transition
energy are described. All schemes are based on making a periodic lattice with the
number of periods n just above the horizontal tune of the machine. An nth harmonic
component 1s introduced by modulating either the focusing or the bending fields or both
in each period. Ways to generate this modulation are explored and the effects on the
lattice functions examined. Some of the methods provide long drift spaces or straight
sections which may be utilized for injection, extraction, RF acceleration etc.
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1. Introduction

In most proton synchrotrons the energy of the particles crosses a value, known as
transition energy E{, at which there is mno phase stability. In high current synchro-
trons the beam loss near the transition energy due to space charge defocusing forces
and beam instabilities becomes important. A way to circumvent this problem is to
design a synchrotron lattice in such a way that Et stays out of the energy range of
the machine. In this report we describe methods of designing such a lattice.

For the TRIUMF Kaon factory a 30 GeV, 100 uA synchrotronl) consisting of CERN/ISR
magnets has been proposed. A regular lattice with Er in the range of acceleration is
given in fig. 1. It was suggested by H.G. Herewardzs to design the lattice for this
machine with high Ey, employing a set of trim quadrupoles. In this report several
possible lattices using different methods for achieving high E; are described. The
present lattice for this proposal is explained in more detail. It provides many long
drift spaces by rearranging the dipole spacing and thus eliminates the need for
additional guadrupeles er straight sections3). The lattice code DIMAT!S) of R.
Servranckx has been extensively used for this work; this code computes the lattice
functions and particle trajectories in a circular machine using a second order matrix

formalism.

2. Theory

In section 2.1 we investigate problems at the transition energy in a high current
synchrotron and explain the need for designing a high transition energy lattice for the
TRIUMF Kaon Factory Synchrotron. In section 2.2 we briefly review the theory of strong
focusing synchrotrons given by Courant and Snyder“), especially regarding the deriva-
tion of the expressions for the transition energy. 1In section 2.3 we discuss the basic
principle of changing the transition energy and in section 2.4 we examine the effects
on the lattice functions.

2.1 Phase Stability &and Transition Energy

In synchrotrons the acceleration of particles having a nonsynchronous energy Or a nomn-
synchronous phase 1s possible due to the mechanism of phase stabilitys’s), provided
that the deviations in energy and phase are not too large. Consider the difference At
in the revolution period T due to a difference AC in orbit circumference C and Av in
velocity v between a nonsynchronous particle with momentum ptAp and synchronous
particle with momentum p:

A1 . AC _ Av

T C v
The momentum compaction factor a is defined as the relative change in circumference due
to a relative change in momentum:

_ AC/C
¢ = Ap/p !

BPB141Y
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Using this and

Av - 1_ Ap
v ¥2 p

where v = E/E0 with E; the rest energy, one obtains

AL = (q -1y 4p:ple
T Y2" p P
thus defining the quantity n.

In most strong focusing proton synchrotrons (see Eq. (13) below) a has a value such
that n increases from negative to positive during acceleration. The energy at which n

becomes O is called the transition energy E, = Ejv, and v, = 1/Ya.

The quantity n, which gives the connection between momentum and phase errors,; is
directly proportional to the strength of phase focusing. Below transition energy n < 0
and phase stability (focusing) exists 1f the synchronous phase is chosen on the rising
side of the RF voltage curve. Above transition n is positive and phase stability can
be restored again if the synchronous phase 1s shifted towards the falling side of the
RF voltage.curve. At transition energy n = 0, meaning no phase focusing to keep the
bunch compressed. However |n| also determines the bunch length which is shortest when

n = O.

In low current synchrotrons the change in RF phase causes almost no beam loss since the
bunch 1s shortest at transition and the time required for the phase change is very
small w.r.t. the time ‘scale of phase oscillations. However, in a high current
synchrotron the situation becomes different due to

(a) space charge defocusing forces (maximum at transition when the bunch is
shortest), disturbing the bunch length,

(b) space charge forces enhancing beam instabilities at transition;

Thus beam loss may become important.

These problems become significant at beam intensities about 1% of those under consider-
ation for a TRIUMF Kaon factory. At the CERN PS a sophisticated Y¢—Jjump scheme has
been implemented7) to allow 3 x 1013 ppp to be accelerated through transition. For
TRIUMF's aim of 6 x 10l% ppp, however, it seemed desirable to design a lattice with

Y¢ outside the acceleration range, if possible.

BPBY-41Y
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2.2 Review of the theory of strong focusing synchrotrons

The equation of horizontal motion for charged particles with momentum p + Ap in a
static magnetic field is given by

a%x 4 [-El—-- K(s)| x = —1—- A2 ' ' (1)
ds? p(s) p(s) P

The path variable s runs from O to C (the circumference of the machine) and x is the
deviation from the equilibrium orbit. The dispersion function ny represents the
deviation for the particle with Ap/p =1

X

or Ny = ZETE . (2)

Furthermore p is the bending radius and X the focusing stremngth on the equilibrium
orbit and these variables satisfy the periodicity conditions:

p(s + Cc) = p(S),
K(s + C).= K(s).

In addition if the machine is constructed of n identical sections then

p(s + C/n) = p(s),
K(s + C/n) = K(s), (3)

ig also satisfied. These sections may either be individual magnet cells, or a super-
period consisting of several cells. The solution of eq. (1) for Ap = O then may be
expressed in the form of the so called Twiss matrix M

x(s) x(0) .
= }{ 5
x'(s) x'(0)
where x' = dx/ds and
cos y + a sin u R sin u
M(s) = (4)
-y sin yu cos 4 - a sin u/,

where B(s) is the envelope function, a = -B'/Z, y = (1+y2)/B and u(s) = fg ds/B_1is the
phase advance. The particles with momentum p can have a maximum displacement vBe where
me is the horizontal emittance. '

To solve the inhomogenous equation (Ap#0) we first apply the Floquet transformation:
g =812 x,
(3)

ds
d¢ = VB »

BPB14M
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where ¢ is the normalized phase advance (2m in one complete orbit), v is the betatron
tune and u = v and Eq. (1) transforms to

2 | 3/2 “
u2+\,zg=\,zi_ ip (6)
d¢ P P
This equation can be solved by expanding 83/2/p in a fourier series:
3/2 @ -1k¢
e ) %® , )
P k==e
1 (n 83/2  -ik¢
with a = — e d¢ ; (8)
2n J -1 p :
a_ elkd
one obtains E = AR 2 L . (9)
2 _ 12
P ¥ V k
Therefore the change in circumference AC for the off momentum particle is
2
c 4T 372 a
AC = & dg = g~ = gde¢ = 2mv3 bp -—?!—k-l—z . (10)
o P o P pkv -k
Using the definition of compaction factor (section 2.1) one obtains
2 ;
v3 ' T
a B e— ———
R < v2-k2 '’

where R is the average radius of the machine with C = 2nR.

In most synchrotron designs the leading term is the one with k = O. Using the
approximation that B can be replaced by its average value (R/v) in eq. (8)

: 3/2 e g1/2 |
a =i B " gqy=L )" B 4= (B)l/2, (12)
o] 27 p 2mvjo p \ ’
Therefore in most synchrotron designs
1
o = 5. (13)
v2

Since v, = 1/Ya, the harmonic k = 0 gives-

'Yt =V . (14)

If instead there is an additional major contribution from the harmonic k =n (and
therefore also from k = -n) then
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1 1 2 v3 2 ]
e S 1 + 2 a /R A (15)
v.2 V2 [ l2q ] R v2-n2 |’

neglecting the contributions from other harmonic components. The factor 2 takes care
of the contributions from |a,| and |a_g

To compute a, due to errors k(s) in the field gradients we quote the following
results of Courant and Snyder.

Defining J_ = f: B(s) k(s) e~ ind 4¢. (16)

the fractional change in B(s) 1is given by

Aﬁ=__izm _._J_IL..E&... (17)
B 4 “pE—e v2 - (n/2)2
Using the modified beta function in eq. (8)
3v Ja R \!/2 18
a == — ———— | — 5
n 2n  4v2-n2 V3 (18)

2.3 Principle of changing the transition energy

The basic principle of changing the transition energy is to make a lattice of periodi-
city n and create a harmonic component ap. A small value of ap will bring a large
change in yy from the unperturbed (ap = 0) value Yt = Vv if n is close to v, (eq.
(15)). This implies that the phase advance of each of n superperiods is close to 2w.
To increase Y¢, n should be just above v and to decrease 1t just below. If v < n and
the harmonic is strong enough then the momentum compaction factor may even become

négative taking y¢ to an imaginary value.

The natural harmonic present due to the number of cells does not contribute signifi-
cantly to vyt since usually the tune of the machine is far away from this number.

It may be seen from eq. (8) that in order to generate an additional harmonic
coefficient a,, one has to modulate either 8 or 1/p or both. We shall go into more
details of this in chapter 3.

2.4 Effects of changing transition enmergy on the lattice functions

In this section we shall examine the effects of various methods of changing transition
energy on the lattice functions. A convenient measure to estimate the increase in the
peak values of lattice functions 1is obtained when the magnitude of the harmonic 1s
adjusted to bring a to zero. The value of lan|, from eq. (15), in that case will be

BPB1-411
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172 .
lanJ = lh— <FL—> .L!E:IéiLlﬁfi . (19)

\)3 v

First we compute the change in the maximum Value of beta function caused by the intro-
duction of the harmonic modulations of periodicity n. This modulation, as a result,
creates harmonics of order k = O, n, 2n, 3n ... Therefore on expanding eq. (17), we
obtain

AB J 2v J 2v J 2v J
—_ A ———h in __%n_z_ 2in ____Z_'i.n_z. 3in
g Gy T 7 Zvi-n? © L m 4(vé-n?) © b+ T 4vZ-9nZ © b (20)
Since v 1s close to n it is important to make J, zero to avoid a large change in B.
Therefore, assuming that J,  1is zero and that the magnitude of harmonics other than k =
n is small, one obtains using eq. (18), (19) and (20)
AR _ 2/ 2 (V2 - n2)1/2 (21)
B 3v

which shows that 8 will have a higher peak value unless v is close to n.

The beta functions and tunes will change in only those schemes which involve the modu-
lation of the focusing properties of the lattice. However, an unavoidable effect of
changing Y¢, in any scheme, is the increase in the peak values (maximum and minimum)
of the dispersion function nx. In the presence of the harmonic components ag and

-ap (and therefore a_p) only one obtains from eq. (2), (5), (9) and (12)

- [BR\!/2 172 _v2 in¢ -in¢
n = + 8 (a. e + a__ e Y. (22)
X <;3> v2-n2 B n

while the original value of n, when vy, was not raised (an = 0) was given by

R\1/2 .
n_ = (ﬁ’g) , (23)
Xo v

with Bo the value of the beta function in that latticee.

Equations (21) to (23) give the fractional change in the peak values of the dispersion
function.

g v (23)1/2 . [1 (B )1/2 ]
Mo [v2-nZ[1/2 \ g, B
V2 :
* [V2 - n2|1/2 (24)

n

neglecting the change in B (eq. (21)). The equation again exhibits the need of staying
away from v = n to avoid the large peak values of the dispersion functions.

BPB14N
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Thus we see that to avoid higher B, v should be close to n (eq. (20)) and to avoid
higher ny (eq. (24)) v should be away from n. Therefore a suitable value of v/n
should be chosen to make a proper compromise.

The change in tune v can be computed by using eq. (4.35) to eq. (4.37) of Courant and
Snyder”).

3. Methods to design a high transition energy lattice

In this chapter we look at ways of creating the harmonic compomnent responsible for pro-
ducing high transition energy in a lattice. It is presumed that v is close to but less
than n unless otherwise mentioned. It may be recalled that for obtaining the harmonic,
coefficient a, one has to modulate either B (the focusing properties) or 1/p (the
bending properties) or both. We divide all methods in three basic approach and discuss
a few possible variations in these approaches in the relevant sections.

3.1 Reverse field magnets

The first published proposale) for a high transition energy lattice was based on
using a number of reverse field magnets. These magnets have the same field index but
they bend in the opposite direction giving 1/p a negative value. This generates a
harmonic coefficient due to the variation in 1/p. The obvious disadvantage of this
scheme lies with the considerable increase in circumference. In the Serphukov
synchrotron for which this method was proposed, approximately an extra 25% magnet
length was required.

3.2 Pairs of trim quadrupoles

In this method a pair of focusing (F) and defocusing,.(D) quadrupoles is used in each
superperiod to modulate the beta function. The F and D quads are placed at about a
phase of m apart and a small difference in B around the two quads generates the desired
harmonic. A detailed analysis of the scheme has been made by Ohnumag),

Tenglovll) and also by Hardt /) using a somewhat different approach. The method

has also been used in the proposed lattice for SIS 12/1812). Ohnuma treats the trim

quadrupoles as an error.in field gradients and obtains

2
N N 9yt z ; | 9]
i~ 11+ . , 28
v.2 V2 212 oo (v2-k2)(4v2-k2)2 S

where Jix has been defined in eq. (16).

It appears from this equation that the component J, with n = 2v will be more effec-
tive in bringing a large change in y¢ than J, with n = v. But eq. (17) dindicates

that 1f n = 2v the change in B will be very large and therefore in that case this equa-
tion and the above expression for y. will no longer be valid. We found that it was
practically impossible to change yy by a very large amount using this component only.

BPELAYY
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The above component (n = 2v) in fact should be avoided in the lattice to keep the maxi-
mum beta low. We use an unequal excitation of the trim quads to eliminate this compo-
nent. If the strength of the two trim quads (F and D) are k + 6k and -k + &k then k
contributes mainly for J, and 8k to Jyp. The magnitude of the inequality in the
excitation of the two trim quads may be used as a fitting variable to keep B almost
unchanged at the point exactly in between the two quads.

In a first lattice designl) for the TRIUMF Kaon factory this method was used with v =
n for taking yy to ~ 35 with maximum beta (both By and By) ~ 40 m. However, this
lattice had an inherent n = 2 v harmonic. By an unequal excitation of trim quads both
Bx and By were made < 32 m while raising vy to an imaginary value. The maximum B

in the same lattice with no excitation of trim quads was about 30 m.

Probably the most straightforward way to modulate B functions in a lattice is to modu-
late the strength of main quadrupoles themselves. This changes Yy without increasing
the total length of quadrupoles in the machine (a relatively small increase in strength
may be required to compensate the small change i{n v). A lattice based on thils scheme
is given in fig. 2. The length of all four horizontally focusing quads in a lattice
with y¢ = v was 1.7 m. To increase Yt to an imaginary value the length of two of
these quads (which are approximately m phase apart) may be changed to 1.4 o and 2.0 o
respectively. However, in the lattice of fig. 2 the lengths are changed to 1.45 m and
1.98 m respectively to suppress J,p, as mentioned earlier. The maximum magnetic

field in the magnet is 1.65 T and in the quad 1.2 T. The length of all magnets is 2 m
and of drifts 0.5 m.

3.3 Modulation of the magnet distribution

In this section we discuss the methods of modulating 1/p without using the reverse
field magnets. In part (a) the missing magnet cells method is discussed for modulating
1/p without affecting the beta functions. This method has been used for the

SATURNE 1113) lattice and for a 3 GeV booster at TRIUMF. In part (b) we combine the
modulation in B to 1/p to increase the magnitude of the harmonic coefficient E™

3.3(a) Missing magnet cells

The harmonic component a, due to 1/p variation can be generated by making a lattice
in such a way that a relatively long section with no magnets is created around one

place in each of n superperiods.

We consider an example in which a superperiod is made of p cells of which e are empty
(no magnets, 1/p = 0). We obtain approximate expressions for y, and other quantities.
Making an approximation in eq. (8) by replacing B by its average value R/v we obtain

. =L R\3/2 jv 1 -ind d¢=1_1_(_&3’2 ﬂ/nle-in¢d¢,
n  2r \v T 27 \v —n/n p

since we have n superperiods. If the superperiod has a reflection symmetry about the
origin

BREI4T1
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n/n
1 = 1
Fcosn¢d¢—;’?

3/2 T
&L
(o} o

. 3/2
a_ =2 & / + cos £dg,

where the new variable r = n¢ ranges from -m to 7 in a superperiod. 1/p 1is zero in the
empty cells and we can put approximately R/p = p/(p-e) in the cells with magnets and
obtain .

1/2
a =~ -&in (re/p) R 2 (29)

n m v3 p-e

The actual circumference factor should be used for R/p if the lattice 1s not tightly
packed.

Replacing a, by this value in (15)

a
1.1 [y 4,80 (ne/pd/ p) o2 (30)
Y2 V2 =2 e ) v2-a2 |’ |
and similarly in (19) -
: 1/72 2
n(¢) = & 1 -28in (ne/p) (2 V" cos n¢] (31)
x v3 n p-e’ v2Z-n?

These approximate exEressions predict results quite close to the values given by the
computer code DIMAT!? ), particularly when the cells with the magnets are tightly
filled. A lattice based on this scheme is given in fig. 3 where one of the four cells
is empty; the number of superperiods is 12 and vy is 10.9143. The maximum magnetic
field used in the magnets is 1,75 T and in quads 1.2 T. The lengths of all magnets 1s
2.5 m and of quads 1.5 m. The drift space between the quad and magnet 1s 0.5 m and
between two magnets 0.3 m. In fig. 4 values of yt and ny predicted by eq. (30)

and eq. (31) are compared with those given by DIMAT. The variable on the x—axis 1s
vg/n which is varied by changing the strength of the 'quads in the lattice of fig. 3.
The empty cell can center either around an F quad or a D quad. The maximum value of
ng in the lattice is lower if it 1s around a D quad. However, the maximum value of
nx in the magnets is lower if it is around an F quad.

3.3 (b) Unequal Drift Lattice

The modulation in 1/p can also be obtained by modulating the strength or the distribu-
tion of the bending fields. This, for example, may be achieved by shifting the magnets
in such a way that they get crowded around one point and get further away from another
point (which is about m phase away from the first).

In a combined function machine the shift of the magnets causes a modulation in B as
well. These two modulations (B and 1/p) can be used together to get a higher value of
the fourier coefficient aj. An example of this scheme 1s given in fig. 10 and is

explained in detail in chapter 4.

8rPB1411
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The scheme of using the two modulations (B and 1/p) can obviously be employed more
efficiently in a separated function machine to obtain high y¢ with modest peak values
of Bx, By and ny. Om the other hand this approach can also be utilized in making

a compact dispersion suppressor for the lattices of high ng. In one example we were
able to bring ny = 5.7 m to zero by using a half empty cell and the modulation in the
quad strength.

4.  Lattice design for the 30 GeV Synchrotron

In this section we describe a lattice for the proposed 30 GeV synchrotron. We explain
how the desired harmonic for the high transition energy is created and how various
parameters are optimized.

The regular lattice (all drifts equal, Y¢ = v) and the plot of its lattice functions
are shown in fig. 1. This lattice is constructed of the so called long F and long D
blocks with each long block consisting of two identical magnets HFL or HDL. In these
long blocks the two magnets have a common coil and therefore the separation between the
two is fixed. However, in the short blocks, HFS or HDS, each magnet has a separate
coil and therefore the separation between the two HFS or HDS can be varied.

The fegular lattice has 48 cells and each cell has a phase advance close to but below
n/2. For a high y, lattice we take a superperiod of four basic FODO cells and shift
‘the magnets to produce

1 2
. +
FOODOFOODOFODOOFODOO

where a single 0 represents a short drift (S) and two 0's, a long drift (L), and where
1 and 2 are the two reflection symmetry points. The magnets are shifted symmetrically
away from 1 and towards 2, thus modulating both the bending and the focusing properties
of the lattice.

It can be seen from eq. (8) that to obtain a high harmonic coefficient |an|, both
g3/2 and 1/p should be high around 2 and low around 1 (or vice versa). In the above
structure decreasing the length of drifts: d increases the magnet density around 2,
making 1/p higher; conversely increasing drifts a makes magnet density and 1/p lower
around 1. It may also be noticed that the short drifts d increase the defocusing (or
decrease the focusing) around 2 (by bringing the D magnets closer to it) and thereby
make 83/2 higher; conversely the longer drifts a make g3/2 jower around 1. Thus for
designing a high transition energy lattice in this scheme, the drifts a should be
longer and d shorter. Also the F magnets should be at the symmetry points; D magnets
at the symmetry points will changé g3/2 and 1/p in opposite senses. One may find

BPBIAT
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several possible combinations of the four drifts "a b c d" satisfying this requirement;
some of the drift patterns for them are:

"LSLS" , "LLSS" , "LMMS" , etc.

Here S, M and L stand for short, medium and long drifts, M being taken equal to the
drift length of the regular lattice. The variation of y¢ with (L-S) between these
patterns is shown in fig. 5.

These changes in the lattice structure also cause changes in the tunes and in the

lattice functions. 1In fig. 5 vy and %x are also plotted (together with yg)

against (L-S). The variation of vy with (L-S) is different in these patterns, it

decreases in pattern LSLS but increases in LMMS and LLSS, more ragidly in LLSS. This

difference is important due to the presence of the factor 1/(v2-n¢) 4in the expressions

for yt and ﬂg (eq. (15 and (22)) and especially where v is close to n. The

decrease in v with increasing (L-S) in pattern LSLS becomes so large that despite an

-increasing |an|, ﬂk eventually decreases. However, y.; continues to increase

because the factor 1/(v2-n2) is multiplied by |a%| in the expression of y_ (whereas it

is multiplied by a, in the expression for‘%x). In fig. 6 @x and B, are piotted against
y

(L-S) for these patterns.

Figure 7 shows the effect of an increase in the drift b and a decrease in c starting
with pattern LSL§. EhisﬁFhanges the pattern to LMMS and eventually to LLSS. The
behavior of yv., By, By» My Vy and v_ against (c-b) is plotted in this figure for the
fixed value o% (a=d) = 3 m. The var%ation of Ye and ﬁx in terms of a, and v_ has been
explained above. The increase in the peak value of Bx (B.,) 1s associated with the Jnx
and vy (Jn and v,) as given in eq. (17). The major cont¥ibuting harmonics are those
of n close’ to v ahd 2v (in our case 12th and 24th harmonics). In the table below we
give very approximate values of J;, and J,, in horizontal and vertical planes. They

b are computed under the assumption that the gradients of all combined function magnets
can be substituted for the gradient errors in the calculation of 12th and 24th harmonic
in eq. (16). We have also used B of the modified lattice instead of that of a regular
lattice. The values of a;, and a,, are also given in this table. They are computed

using eq. (8).

Table 1

S.No. (c-b) a, Jiox 12y ay Joux Jouy
(m) (ml/2)  (m) . (m) (ml/2) (m) (m)

1 -3 -0.092 -95 185 0.008 20 -18

- 2 -2 -0,078 -60 166 0.01 33 -86
3 -1 -0,069 -18 157 0.033 102 -38
4 0 -0,.067 . 47 183 0.069 257 130
5 1 -0.067 169 296 0.149 563 438
6 2 -0.062 549 709 0.338 1461 1210

-~
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For B to be low both J and J,, (more important J2k) should be small. We see in fig.
7 that B is low when both 12th and 24th harmonics are small.

The harmonic modulation in 1/p in structure LSLS can be further augmented by increasing
the first long drift a and decreasing another long drift c. The effect of this
variation on various parameters is shown in fig. 8.

For the main ring structure LSLS 1is preferred because (a) it gives 2 long drifts in
every half superperiod (24 in full machine) (b) it has the lowest B, and ny. The
present lattice is actually a slightly modified version of LSLS type. This
modification was done to obtain high enough vy, and also to further optimize the lattice
functions. The layout of this lattice is shown in fig. 9 and the lattice functions are
plotted in fig. 10. The parameter list is given in Table 2.

Table 2

Parameter list for the 30 GeV Main Ring

1. Machine Structure Parameters

List of machine components in one superperiod:

FDR1 HFL FD1l HDL FDR1 FDR1 HDL FD22 HFL FDR1
FDR1 HFL FD33 HDL FDR1 FDR1 HDL FD44 HFL FDR1
FDR1 HFL FD44 HDL FDR1 FDR1 HDL FD33 HFL FDR1
FDR1 HFL FD22 HDL FDR1 FDR1 HDL FD1l HFL FDR1

(where the elements whose name begins with F are the drift spaces and with H are
the magnets. Values of length, etc. of these .elements are given below).

Circumference - 826.87 meter
# Superperiods - 12

# Cells : 48

## Magnets : 192

Maximum magnetic field in the magnet 5 1.35 Tesla
Length, bend angle and the field index of the magnets:

Magnet Effective length (m) . Bend angle (deg) Field index

HFL 2.5109 1.88145 -229.3925
HDL 2.4856 1.86855 218.7433

BPB1-411
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Length of the drift spaces (m)

FD11 (=a) : 5.6278
FD22 (=b) ] 2.3377
FD33 (=c) ! 4.6378
FD44 (=d) ¥ 1.5477
FDR1 4 0.0395
2. Beam Dynamics Parameters
Horizontal tune 2 10.98
Vertical tune : 9.87
Max. By $ 30.5m
Max. By $ 37.7 m
Max. Ny : 7.6 m
Min. nyg : 4.2 m
3. Extraction System Parameter
## Kicker magnets : 2
# Septum magnet : 1

Length, Deflection and the magnetic field in the kicker and the septum magnet

Length Deflection Magnetic field
Kicker 4.5 m 1.35 m rad .03 T
Septum 3.5 m 17.5 m rad S5 T

Conclusions

Several methods of raising the transition energy of a lattice have been explored and
the effects on the lattice functions examined. For the main ring of the TRIUMF Kaon
Factory with combined function CERN/ISR magnets a lattice with modulated drift spaces
seems to be the most attractive one. It eliminates the need for extra straight
sections and does not require additional trim quadrupoles.

In a separated function machine, particularly for higher energy, a modulation in
quadrupole strength seems to be the most straightforward and appealing method. 1In a
lower energy machine, the 3 GeV Booster for example, the missing magnet method coupled
with a modulation in quadrupole strength may be more suitable.

To keep the maximum value of the dispersion function low the number of superperiods
should not be too close to the horizontal tune of the machine even 1f it requires a
higher modulation. Though a proper choice will depend on a particular lattice we find
that an optimum value of the tune per superperiod lies usually between .85-.95.

' The harmonic component with v close to r/2 must be suppressed to avoid an unnecessary
increase in the maximum value of beta functions in the schemes involving a modulation

in the focusing properties.
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Appendix A

Extraction System for the unequal drift lattice

Here we briefly describe a fast extraction system which fits into the loﬁg drifts of
the unequal drift lattice to take the beam out of the machine in a single turn.

The extraction system is designed for a beam of emittance 12.5 v mm mrad and consists
of two kicker magnets and one septum magnet. The maximum magnetic fields to be used in
the kicker and in the septum magnets are respectively .03T and .5T. Both kickers are
4.5 m long and give the beam an outward deflection of 1.35 m rad. The second kicker is
located about 2n phase advance apart from the first kicker and the combined deflection
takes the whole beam to the other side of the septum magnet, which always stays out of
the path of the circulating beam. When this beam arrives at the 3.5 m long septum, it
already has a clear separation of 1 cm from the original circulating beam and gets an
additional deflection of 17.5 m rad to get completely out of the synchrotron.

The extraction system is shown in fig. 11 where the envelopes for the deflected and the
normal circulating beams have been plotted.

BPB1-411
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Fig. 1. Regular lattice consisting of CERN/ISR magnets. The transition energy is in
the range of acceleration. (Ref. Ch. 1).
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rig. 2. Raising transition energy by modulsting the quadrupole lengths. The length
of the quadrupoles at the two symmetry points are respectively 1.98 m and
1.45. The compaction factor has become negative and Y, imaginary. Length of
all quads in & regular lattice will be 1.7 m. (Ref. ce 3.2). ;
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Fig. 4. Comparison of the dispersion and Yy for the computed results using the
fornulas derived in Sec. 3.3 (a) and the results obtained from the lattice
code DIMAT in the missing magnet cells method. (Ref. Sec. 3.3 (a)).



B 1 | '
| 1:198 Il[ I " / L
2 : LMMS 'l I|I.r /
4 3 :LLSS 3:}3 : ’l /| . L
i '
- { 13 2 2 2 -24
ely i 2

ETAX (m), NUX

0 llll'I"illl!Il'l“!ll!li"'llllllllll
0 1 2 3 4 S 6 ?

LONG DRIFT — SHORT DRIFT (m)

Fig. 5. Effects of increasing the difference between the long and the short drifts
starting from a regular lattice. Patterns examined: 1:LSLS, 2:LMMS and
3:LQ§S (M= 3.5m = drift length in a regular lattice). In this figure
Vys Ny and Y, are shown (Ref. Ch. 4).

w L A L L l A L A L l i - A - .l A ' ' L 1 I_rl L 1 l A4 1 1 .l A L o A
—~~ : :
E ; L
5¢ 40 - B
< ] [
= g |
: . L
= 307 3
L"] - =
m Y L
»S 20 - -
< - L.
= 1: LsLs BETAXMAX : —
< * - 3
E= 10 - 2 : LMMS e
B 3 : LLSS BETAYMAX : - ---

o Ll L] L L] ] Ll L L L] ‘ Ll LI 'l T L L) L] I L] L T L] l L) L] T L I L) L L] L]

0 1 2 3 4 S 6 7
LONG DRIFT - SHORT DRIFT (m)
Fig. 6. Same as FPig. 5 but behaviour of ax and a’ is shown. (Ref. Ch. 4).

llll!]oll’lll]llll]'lllj_l!lll_{llll30
7

GAMMA TRANSITION



GANTR NUX NUY, BETAXM BETRYM ETAXM (M

Fig. 7.

BETAX, BETAY, ETAX (m); NUX, NUY, CAMMA TR

'
o

L fiE o e o)

~N
(=]

5
e ey IrT S IP
t

lll[lil"l!l'

8
<
-
i?>

Trre

DRIFT b — DRIFT ¢ (m)

Behaviour of lattice functions:

Starting from the pattern LSLS (for drifts abcd), the difference between the
drifts b and c is increased. It changes the pattern LSLS to LMMS (when

b-c = 0 m) and eventually to LLSS (when b—¢c = 3m; however, the motion
becomes unstable before that). (Ref. Ch. &4 and see alsoc Table 1).
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ONE SUPERPERIOD OF THE 30 GEV MAIN SYNCHROTRON

Fig. 9. Layout of one superperiod. A relatively higher magnet density is created at
the mid-point. This provides the desired harsonic to increase v, (see '
lattice below). There are 12 superperiods in the nain synchrotron. . (Ref.

Ch. 4).
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ENVELOPES FOR THE DEFLECTED AND THE NORMAL CIRCULATING BERAnN
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Fig. 11. A fast extractién system for the main eynchrotron. Long drifts of the
unequal drift lattice of Fig. 10 have been utilized for placing the two
kickers and one septum magnet. (Ref. Appendix A).



