TRIUMF	4004 WESBROOK MALL, UBC CAMPUS, VANCOUVER, B.C. V				
DESIGN NOTE	NAME	Ramesh C. Gupta	DATE August 1983	FILE NO. TRI-DN-83-31	PAGE of 6
SUBJECT Straight Sect:	ion De	esigns			

1. Introduction:

Straight Section insertions are required e.g. for RF acceleration, injection and extraction. Ideally they should be designed in such a way that when they are put in the lattice the lattice functions in the original lattice are not affected.

For the TRIUMF Kaon Factory 30 GeV Syncrotron¹⁾ four straight sections (SS) are being considered. Various kinds of SS have been designed for this purpose (several examples are given in Appendix A). These can be broadly divided in two major classes:

- (a) The phase advance is adjusted so that the matrix of the insertion becomes 3x3 unit matrix ("2π insertions") or 2x2 negative unit matrix ("π insertions").
- (b) The beta and alpha functions of the insertion at the end points are matched with those at the break point of the lattice.

Both types of insertions leave the beta functions in the original lattice unchanged. The Simple Collins insertions²) (discussed in section 4) can be considered as an intermediate stage. In all but the 2π SS, the dispersion function (n) and its derivative (n') do not match. In an ideal case n and n' would be brought to zero by using dispersion suppressors³) before the SS so that they don't get modified in the lattice. In lattices with the transition energy above the top energy, realized by a modification of the n function, special care with the SS design has to be taken if dispersion suppressors are not used.

Any Straight Section will be composed of quadrupoles and drift spaces. There is some flexibility in the way a proper combination is obtained. For example, one can either have quadrupoles at the ends and a long free space in between or have a defocussing (focussing) quadrupole in the middle, focussing (defocussing) quadrupoles in both ends and two long drifts in between.

To start with the design, rough (initial) parameters were obtained by analytic formulas (Appendix B) or simply by guess. These parameters may include the phase advance (μ), β and α . The final parameters for matching were obtained by various fitting procedures. The fitting routines usually give absurd results, or don't succeed, if the initial parameters are too far off. The computer code DIMAT⁴) (with the fitting routines Simple Fit and Least Square Fit) was used for designing the Straight Sections.

2. π and 2π Sections:

In principle 2π insertions are the best since by the definition of unit matrix β and η both are matched. However they turned out to be too long for us. In the 30 GeV lattice we found them to be about 100 meters long.

 π insertions which matches β only, on the other hand, could be made about 50 meters long and might be considered as a possible candidate. Some of the structures considered are:

4004 WESBROOK MALL, UBC CAMPUS, VANCOUVER, B.C. V6T 2A3 TRIUMF FILE NO. TRI-DN-83-31 PAGE of DATE August 1983 6 NAME Ramesh C. Gupta **DESIGN NOTE** SUBJECT Straight Section Designs FS OF QD FL QD QF FS 1) FS QF QD FL QD OF FS 11) QF FS FL QD QD \mathbf{FL} QF FS 111) QF. FS OD FS QD FL QF FS QF QD FL 0D QF FS iv) Here FS and FL stands for short and long drift spaces. QF and QD are horizontally focussing and defocussing quads. Note that all but (i) have mirror symmetry. Straight Sections with Lattice Functions Matching: 3. In this class β and α at the end points of the insertion are matched with those at the break point of the regular lattice. In all cases considered the lattice was broken at the point of reflection symmetry where α goes to zero. This occurs between two magnet blocks and at two places in our superperiod. The Straight Sections were also designed to have reflection symmetry so that α is zero at the end points. Therefore in this approach we only needed to match β_X and $\beta_y.$ As mentioned before n will not be matched. This class of SS was given maximum consideration and several types with various lengths, phase advance and beta functions were designed. Some of the structures considered are: FS QD QF FL QD QF FS v) FS QF FL QD QD FS vi) QF FS QD FL QF QD FL vii) FS OF The symbols have been explained in the previous section. Collins Insertions: 4. Simple Collins insertions 2), 5) (with an F and a D quad and a long drift in between - phase advance being $\pi/2$ for the maximum drift length) were also designed. However the requirements of the lattice functions matching $\alpha_{_{\!\!X}}$ = $-\alpha_{_{\!\!Y}}$ and $\gamma_{_{\!\!X}}$ = $\gamma_{_{\!\!Y}}$ (or $\beta_x = \beta_y$ since $\gamma = (1 + \alpha^2)/\beta$), were never exactly met. The mismatch will not be large if β_x and β_y are not too different at the point where $\alpha_x = -\alpha_y$. The structure of Simple Collins insertion is: QD FS. FL QF FS Transformers: 5. If the lattice functions at the end points of SS are not matched with those at the break point of the normal lattice then transformers are required to do this matching. The values of lattice functions at the two ends of transformers are different. At the

one end it is made as that of the break point b of the normal lattice and at the other

TRIUMF	4004 WESBROOK M	ALL, UBC CAMPUS, VA	NCOUVER, B.C. V61 2A3
DESIGN NOTE	NAME Ramesh C. Gupta	DATE August 1983	TRI-DN-83-31 3 of
Straight Se	ction Designs		
end as that of t lattice function If b ^T s and s ^T b ^s	he end point s of SS. The sof point s to that of the start of the star	herefore they equiv the point b. rmers (with the low	alently transform the er script meaning that at s of the point indicated)
that end they ha and similarly if	s ^S s symbolizes SS, then	the completely mat	ched structure would like
b ^T s s ^S s	s ^T b*		
However, in our functions of poi	case we avoided the need nt s equal to those at t	of transformers by he point b at the f	making the lattice irst step itself.
Acknowledgement:			
We appreciate th Sections.	e help and guidance from	R. Servancks [†] in t	he design of the Straigh
References:			
l. Progress Re factory, Ju	port on the feasibility ne 1983.	of using the ISR ma	agnets in a TRIUMF Kaon
2. T. Collins	CEA - 86 (1961).		
3. J.I.M. Botr	an, Dispersion Suppresso	ors, TRI-DN-83-33.	
4. R. Servancl	x, Computer program DIMA	T for designing the	e particle accelerators.
5. E. Keil, C	CRN Report 77-13, page 26	5.	
6. G.M. Stins	on, A course in Beam Opti	lcs, TRI-DNA-83-9.	
7. A.A. Garren Conference	n, Design of long straigh on high energy accelerat	nt sections for sync tors, Frascati (196	chrotrons, V Internationa 5), page 22.
†)Univ. of Sask	atchewan, Saskatoon, Sasl	katchewan, Canada S	7N OWO.

BP81-411

TRIUMF DESIGN NOTE		4004 WESBROOK MALL, UBC CAMPUS, VANCOUVER, B.C. V6T 2A					
		NAME Ramesh (C. Gupta	August	1983 ^{FI}	LENO. TRI-D	N-83-31
BUBJECT	Straight Sect	ion Designs					
APPEN	DIX A						
Here	we mention th	e parameters of	few seled	ted Straig	t Section	ons.	
1.	π Section						
	Structure: C Lengths: FL Total length: Strength of q Phase advance	$F FS QD FL QD I= 15 meters, F46 meters.uads: QF = .0:: \mu_x = \mu_y = \pi$	FS QF QF FS S = 1 meter 987107 m ⁻¹	S QD FL QD r, QF = 1.5 , QD =10	FS QF 5 meters, 075857 m ⁻	QD = 1.5	meters.
2.	Collins Inser	tion					
2	Lengths: FL Total length: Strength of of Phase advance $\beta_x = \beta_y = 23$.	= 20 meters, F 25 meters. uads: QF = -Q $\mu_X = \mu_y = \pi$.675 meters and tions having re	$S = .5 \text{ metric}$ $D = .100732$ $/ \frac{2}{\alpha_{x}} = -\alpha_{y}$ flection s	ers, QF = 2 288 meter	2 meters, 1.	QD = 2 m	eters.
5.	Since they ha	ave reflection	symmetry a	$x = \alpha_y = 0$	always.		
	a) Structur Lengths Total 10 Strength Phase ac $\beta_x = 23$	re: FS QF FL : FL = 4.0 met ength: 14 meten of quads: QF ivance: $\mu_x = \mu$.544 meters, β_y	QD QD ers, FS = rs. 09221 y = .125 y = 13.653	FL QF FS 1.5 meters meter ⁻¹ , Q meters.	, QF = .7 D =090	5 meters, 21 meter ⁻	QD = .75
	b) Structur Lengths Total la Strengt Phase a $\beta_{\rm X}$ = 23	re: QF FS QD : FL = 8 meter ength: 14 meter h of quads: QF dvance: μ_x = . .544 meters, β_y	FL QD rs, FS = 1 rs. f = .12256 154, $\mu_y =$ f = 13.652	FS QF meter, QF meter ⁻¹ , Q .116. meters.	= 1 meter D =119	•, QD = 1 93 meter ⁻⁾	meter.
	c) Structu Lengths Total 1 Strengt	re: QD FS QF : FL = 15 mete ength: 22 mete h of quads: QF dvance: W = 4	FL QF ers, FS = 1 ers. r = .10504 .177, $\mu_{r} =$	FS QD meter, QF meter ⁻¹ , Q .247	= 1.3 me D = .1157	ters, QD 75 meter ⁻²	= 1.2 met

BP 81-411

് മുല് ആപ്ര് തിപ്

TRIUMF	4004 WESBROOK MA	ALL, UBC CAMPUS, VA	NCOUVER, B.C. V6T 2A3
DESIGN NOTE	NAME Ramesh C. Gupta	DATE August 1983	FILE NO. TRI-DN-83-31 5^{PAGE} of 6
SUBJECT Straight Sect	ion Designs		
APPENDIX B			
In this appendix w frequently used.	ve mention a few analyti	c formulas and rest	ults which were very
a) If the SS has the transfer	mirror symmetry and R matrix of the full SS i	is the transfer ma s obtained by	trix of first half of it,
	$s = \begin{pmatrix} 2R_{11} & R_{22} - 1 \\ 2R_{11} & R_{21} \end{pmatrix}$	$\frac{2R_{12}}{2R_{12}} \frac{R_{22}}{R_{22}}$	1)
$S_{11} = S_{22}$ mea	ans $\alpha = 0$ always.		
Phase advance	e and β function can be	obtained by using	definitions of twiss matrix
	$T = \begin{pmatrix} \cos \mu + \alpha \sin \mu \\ -\gamma \sin \mu \end{pmatrix}$	μ βsin cos μ - α	μ) sin μ
Therefore μ :	$= \cos^{-1} (2R_{11}R_{22} - 1),$		
and $\beta = R_{12}/3$	$SQRT(R_{11}/R_{22} - R_{11}^2)$.		
b) The R matrix	of one half of the mir	ror symmetric SS is	given below in two cases.
i) Structu	re: F1 QF QD F2 F2	QD QF F1	
	* R	07	
Lengths Strengt and θ_1	: $F1 = k_1$, $F2 = k_2$, QF h of quads: $QF = k_1$, $\theta_2 = k_2m_2$	$= m_1, QD = m_2$ QD = k ₂	
Horizon	tal matrix elements		
$R_{11} = c$	os θ_1 (cosh $\theta_2 + k_2 l_2$	$\sinh \theta_2$) - $k_1 \sin \theta_2$	$\theta_1 (1/k_2 \sinh \theta_2 + \ell_2 \cosh \theta_2)$
$R_{12} = ($	$\ell_1 \cos \theta_1 + 1/k_1 \sin \theta_1$) (cosh $\theta_2 + k_2 \ell_2 \epsilon$	$\sinh \theta_2$
+	$(-k_1\ell_1 \sin \theta_1 + \cos \theta_1)$) $(1/k_2 \sinh \theta_2 + \frac{1}{2})$	$(2 \cosh \theta_2)$
$R_{21} = k$	$e_2 \cos \theta_1 \sinh \theta_2 - k_1 \sin \theta_2$	$\frac{\ln \theta_1 \cosh \theta_2}{\theta_1 \cosh \theta_2}$	$\theta_{1} = \theta_{1} + \cos \theta_{1} \cosh \theta_{2}$
$R_{22} = k$	$\frac{1}{2} \left(\frac{k_1}{2} \cos \theta_1 + \frac{1}{k_1} \sin \theta_1 \right)$		
And sim	ilarly in the vertical	plane.	

.

38

9 11 1 1

TRIUMF	4004 WESBROOK MALL, UBC CAMPUS, VANCOUVER, B.C. V6T 2A3 NAME Ramesh C. Gupta DATE August 1983 FILE NO. TRI-DN-83-31 PGE of 6					
DESIGN NOTE						
SUBJECT Straight Section	on Designs					
ii) Structure: Symbols as	: <u>F1 QF F2 QD</u> QD F2 QF F1 R s in part (1).					
Horizonta: $R_{11} = \cos R_{12} = (1/1)$ (l_2) $R_{21} = k_2 \cos R_{22} = k_2$ (l_3)	<pre>l matrix elements: $\theta_1 \cosh \theta_2 - k_1 \sin \theta_1 (\ell_2 \cosh \theta_2 + 1/k_2 \sinh \theta_2)$ $k_1 \sin \theta_1 + \ell_1 \cos \theta_1) \cosh \theta_2 + (\cos \theta_1 - k_1 \ell_1 \sin \theta_1)$ $\cosh \theta_2 + 1/k_2 \sinh \theta_2)$ $\cos \theta_1 \sinh \theta_2 - k_1 \sin \theta_1 (\ell_2 k_2 \sinh \theta_2 + \cosh \theta_2)$ $(1/k_1 \sin \theta_1 + \ell_1 \cos \theta_1) \sin \theta_2 + (-\ell_1 k_1 \sin \theta_1 + \cos \theta_1)$ $k_1 \sinh \theta_2 + \cosh \theta_2)$</pre>					
And simil	arly in the vertical plane.					

3