Corrector Designs for Superconducting Solenoid for e-lens

Ramesh Gupta April 13, 2010

Design Considerations for e-lens correctors

• Short correctors must create a dipole field of 0.02 T and long correctors 0.006+ T (both horizontal and vertical)

• Should have a minimum layers to minimize schedule and cost

 Should have low operating current to minimize heat load (more important for stand alone test)

Design Types for Conductor Dominated

- •Optimize end for field quality
- •End takes significant space
- •About 1 coil dia wasted in dipoles

Serpentine Design (B. Parker)

- Easy to bring leads out
- ~2-d design
- Used in most magnets (default)
- End takes space (relevant only in short magnets)

Optimum Integral

- Most optimum use of space
- Full length used at midplane
- Spacers in body and ends are modulated to obtain integral cosine theta distribution
- Leads do not come out easily in a single layer design
- Developed and used in AGS corrector (in helical magnet)

Optimum Integral Design

One layer each for horizontal and vertical dipole correctors

Desired Field is obtained at 9.4 A

Serpentine Design

One layer each for horizontal and vertical dipole correctors

Desired Field is obtained at 13.8 A (~50% more than optimum integral)

Optimum Integral Design (take 2)

Both horizontal and vertical dipole correctors are accommodated in a single layer

Iron Dominated Corrector Design

Opera

Field in Iron Dominated Corrector Design

Two Designs – side by side

Topic for Discussions

- How do we construct iron dominated design
- Comparison of two designs