

New Magnet Designs and R&D Programs (HEP/NP/FES/ARPA-E/SBIR, ...)

Ramesh Gupta

October 18, 2024

Overview

- In addition to designing and building reliable superconducting magnets, BNL Magnet Division has invented and/or initiated many designs and technologies. They are making a significant impact around the word now, and/or are poised to in future.
- These innovations are well recognized outside the laboratory; many resulted in record performances, and many have brought new fundings and that too from a variety of sources.
- Highlight of some of those programs and vision are presented here. Please visit <u>https://wpw.bnl.gov/rgupta/</u> for more.

Common Coil Design and R&D Efforts

Design Study for a Staged

Very Large Hadron Collider

Report by the collaborators of

The VLHC Design Study Group.

Brookhaven National Laboratory Fermi National Accelerator Laboratory Laboratory of Nuclear Studies, Cornell University Lawrence Berkeley National Laboratory Stanford Linear Accelerator Center Stanford University, Stanford, CA, 94309

https://wpw.bnl.gov/rgupta/common-coil-design/

A BNL invention that is shaping the HEP hadron collider design

Brookhaven National Laboratory

Magnet Division

Conventional design with complex ends

Very Large Hadron Collider

Used in US

vlhc (2001)

proposal

SLAC-R-591 Fermilab-TM-2149 June 4, 2001

US R&D Programs

European R&D Programs

CERN Coils @CIEMAT

Rotated Block Coil cross-section Concept of the 20T Dipole Magnet for SPPC

New Magnet Designs and R&D Programs

-Ramesh Gupta,

Work supported in part by the Department of Energy contract DE-AC03-76SF00515

ATRO Accelerator Science & Technology Department

O

OverPass/UnderPass Design for Single Aperture Magnet

https://wpw.bnl.gov/rgupta/overpass-underpass/

Collaboration with CERN (MDP)

Brookhaven National Laboratory Magnet Division

New Magnet Designs and R&D Programs

-Ramesh Gupta,

ATRO Accelerator Science & Technology Department

This could become part of muon collider magnet R&D

HTS Solenoid Program for Several Applications

https://wpw.bnl.gov/rgupta/hts-magnet-program/

Brookhaven National Laboratory **Magnet Division**

SMES (arpa-e funded)

Record field/energy at 10 K or higher (referenced in fusion proposals)

Two grants from IBS Korea (initially funded for ~4.5M\$)

10.8 T Peak Field

High field HTS solenoid are crucial to muon collider

New Magnet Designs and R&D Programs

-Ramesh Gupta,

ATRO Accelerator Science & Technology Department

High Operating Temperature and Radiation-resistant HTS Magnets (R&D performed for three RIA/FRIB HTS Magnet Programs) https://wpw.bnl.gov/rgupta/frib-ria-papers/

tolerant magnets are relevant to Muon Collder

National Laboratory Magnet Division BNL has a large inventory of HTS racetrack and solenoid coils that could be useful for quench protection and other generic HTS magnet R&D programs.

New Magnet Designs and R&D Programs

-Ramesh Gupta,

ATRO Accelerator Science & Technology Department

https://wpw.bnl.gov/rgupta/ the-dcc017-story/

- A unique magnet with a large open space for insert coil and high field cable test in field
- Unique facility to allow technology demonstrations
- Rapid-turn-around and low-cost R&D=> changes the way we do innovative and systematic R&D
- Used by HEP, Fusion, and R&D programs around the world
 Brookhaven National Laboratory

Magnet Division

Common Coil Test Facility (CCTF) A unique magnet R&D and test facility at BNL

Based on the highest field (10.2 T) React & Wind Nb₃Sn dipole

- 1. Magnet (dipole) with a large open space
- 2. Coil for high field testing
- 3. Slide coil in the magnet
- 4. Coils become an integral part of the magnet
- 5. Coil test becomes a magnet test at a lower cost and faster turn-around

New Magnet Designs and R&D Programs

-Ramesh Gupta,

ATRO Accelerator Science & Technology Department

HEP/FES Synergy at CCTF- 2 HEP Coils and 2 FES Samples

4 tests in one go: record hybrid field for HEP, crucial cable test for FES

Project 8: Measurement of Neutrino mass by double beta decay in Tritium

Vikas Teotia

Tritium Beta Spectrum Measurement and Neutrino Mass Limit from Cyclotron Radiation Emission Spectroscopy

Cyclotron Radiation Emission Spectroscopy (CRES)

solenoid

Brooknaven

National Laboratory **Magnet Division**

A few slides on collaboration

New Magnet Designs and R&D Programs

Research Institutions

- MSU/FRIB
- CERN
- KEK, Japan
- University of Kyoto,
 - Japan
- IBS, Korea
- RISP, Korea
- PSI, Switzerland
- IHEP, China
- University of Houston
- Texas A&M
- LBNL
- Fermilab
- SSC

Businesses

- Particle Beam Lasers, Inc. (PBL)
- Muons, Inc.
- HyperTech
- General Atomics (GA)
- Commonwealth Fusion Systems (CFS)
- Renaissance Inc., USA
- Solid Material Systems (SMS)
- Columbus Superconductor, Italy
- Showa, Japan
- SuperPower, US
- American Superconductor Corporation
- Advanced Conductor Technology
- ABB

A Partial List

of

Collaborators

New Magnet Designs and R&D Programs

Topics of Collaboration

- Common coil dipole
- Optimum integral design
- > Overpass/Underpass magnets
- > Open midplane dipole
- Modular quadrupole design
- HTS dipoles/quadrupoles/curved magnets
- High field HTS solenoids for many applications (muon collider, SMES, Axion search, neutron scattering)
- Superconducting shielding
- Recent fusion and HEP research with rapid-turn-around R&D facility with uniquely designed and built magnet DCC017

Multiple Awards with a Single Collaborator - Particle Beam Lasers, Inc. (to show that collaborators keep coming back, we must be doing something right)

https://wpw.bnl.gov/rgupta/pbl-bnl-awards/

	1.	A 6-D Muon Cooling System Using Achromat Bends and the Design, Fabrication and High Temperature (HTS) Solenoid for the System. DE-FG02-07ER84855	Test of a Prototype	August 2008	\$850,000
	2.	Study of a Final Cooling Scheme for a Muon Collider Utilizing High Field Solenoids.	DE-FG02-08ER8503	7 June 2008	\$100,000
	3.	Design of a Demonstration of Magnetic Insulation and Study of its Application to Ior	ization Cooling. DE-SC	000221 July 2009	\$100,000
	4.	Study of a Muon Collider Dipole System to Reduce Detector Background and Heatin	g. DE-SC0004494	June 2010	\$100,000
	5.	Study of a Final Cooling Scheme for a Muon Collider Utilizing High Field Solenoids: C Design, Fabrication and Testing of Coils.	cooling Simulations and DE-FG02-08ER85037	August 2010	\$800,000
	6.	Innovative Design of a High Current Density Nb_3Sn Outer Coil for a Muon Cooling Ex	periment. DE-SC00062	227 June 2011	\$139,936
	7.	Magnet Coil Designs Using YBCO High Temperature Superconductor (HTS).	DE-SC0007738	February 2012	\$150,000
	8.	Dipole Magnet with Elliptical and Rectangular Shielding for a Muon Collider.	DE-SC000	February 201	\$\$150,000
	9.	A Hybrid HTS/LTS Superconductor Design for High-Field Accelerator Magnets.	DE-SC0011348	February 2014	\$150,000
	10	. A Hybrid HTS/LTS Superconductor Design for High-Field Accelerator Magnets.	DE-SC0011348	April 2016	\$999,444
	11.	. Development of an Accelerator Quality High-Field Common Coil Dipole Magnet.	DE-SC0015896	June 2016	\$150,000
	12.	. Novel Design for High-Field, Large Aperture Quadrupoles for Electron-Ion Collider.	DE-SC00186	April 2018	\$150,000
	13.	. Field Compensation in Electron-Ion Collider Magnets with Passive Superconducting	Shield. DE-SC0018614	April 2018	\$150,000
	14.	. HTS Solenoid for Neutron Scattering.	DE-SC0019722	February 2019	\$150,000
	15.	. Quench Protection for a Neutron Scattering Magnet.	DE-SC0020466	February 2020	\$200,000
	16.	. Overpass/Underpass Coil Design for High-Field Dipoles.	DE-SC002076	June 2020	\$200,000
	17.	. A New Medium Field Superconducting Magnet for the EIC.	DE-SC0021578	February 2021	\$200,000
Brookhaven	18	. A New Medium Field Superconducting Magnet for the EIC.	DE-SC0021578	April 2022 \$1,	1500,000
Magnet Division		New Magnet Designs and R&D Programs -Ramesh Gupta, ATRO Accelerator Science	& Technology Department	October 18, 2024	1:

Summary

- Magnet Division has been a leader in inventing and/or initiating R&D on new designs and technologies. In the limited time available, only a select few of our visionary ideas were presented, to give you a flavor.
- Magnet Division also takes initiatives in engaging with many US and overseas collaborators, both in research institutions and in industries.
- While advancing the superconducting magnet technology, these efforts have also brought a significant new funding from a variety of sources.
- The unique common coil test facility (CCTF), not only offers a new approach to lower-cost, rapid-turn-around R&D, it also creates an R&D and testing environment which is not available anywhere in the world.

Extra Slide(s)

New Magnet Designs and R&D Programs

