

Electron Lens Superconducting Magnet Testing

Joseph F Muratore

October 20, 2010

- Magnet Test Parameters
- Magnet Instrumentation
- Testing Conditions
- Quench Protection
- Test Plan

2

Magnet Test Parameters

COIL	Number	L	I _{op}	I _{max}	E
TYPE	of each	(H)	(A)	(A)	(kJ)
MAIN SOLENOID	1	14	460	500	1500
FRINGE SOLENOID	2	46	47	60	51
ANTI-FRINGE SOLENOID	2	3.7	33	50	2
LONG VERT CORRECTOR	2		34	40	
LONG HORIZ CORRECTOR	2		34	40	
SHORT VERT CORRECTOR	5		26	30	
SHORT HORIZ CORRECTOR	5		26	30	

3

Magnet Instrumentation

Power Supplies

17 independent power supplies (12 bipolar supplies)

- Voltage Taps

 - coil voltages
 center taps
 each set of layers (segments with bypass diodes)
 superconducting leads
 copper leads
- Temperature Sensors
 - silicon diodes at both top and bottom ends
 carbon-glass or cernox at leads

TESTING CONDITIONS

- 6 m deep vertical test dewar
- 1500 W helium refrigerator 300 L / hr capacity
- All magnet instrumention & power leads use top plate feedthroughs
- Liquid helium bath at 4.5 K, 131 kPa

NATIONAL LABORATORY

Two quench detection schemes are used.

- coil difference quench detectors uses center tap and monitors the voltage difference between matched coils or matched coil halves
- current derivative quench detectors monitors difference of current derivative voltage and coil total voltage – in case of simultaneous quenches

Quench Protection – Energy Extraction

NATIONAL LABORATORY

Max voltage to ground limited to Vmax= ±300 V

Number of Cold Diodes Needed: Main Solenoid: n = 11Fringe Field Solenoid: n = 11Anti-Fringe Field Solenoid: n = TBD

Nuclear Matter - Qua

TEST PROCEDURES

- Vertical testing of cold mass
- Electrical checkout at 4.5 K Coil resistances to ground Voltage tap continuity checks Hipots of coils AC voltage coil measurements Power supply shutoffs (manual QD trips)
- Main solenoid 5 cycles to 500 A at 5 A/s
- Fringe field solenoids to 60 A at 1 A/s
- Anti Fringe Field solenoids to -50 A at 1 A/s
- Long correctors cycled to ±40 A at 1 A/s
- Short correctors cycled to ±30 A at 1 A/s
- Simultaneous power cycles of coils
- No magnetic field measurements during vertical testing

TEST PROCEDURES

- Horizontal test of magnet in cryostat
- Horizontal testing in liquid helium bath at 4.5 K
- Repeat of power cycle tests done in vertical
- Magnetic field measurements

Vibrating Wire Hall probe

SUMMARY

- 15 17 independent circuits and power supplies
- Vertical testing of cold mass only
- Quench voltages limited to ±300 V to ground
- Power cycle testing only, no deliberate quenches
- No magnetic field measurements during vertical testing
- Field measurements (vibrating wire and Hall probe) during horizontal testing

