BROOKHAVEN NATIONAL LABORATORY Superconducting **Magnet Division**

Abstract- The Optimum Integral Design (OID) with Direct Wind (DW) technology offers a unique value engineering opportunity for the Interaction Region (IR) dipoles B1pF and B1ApF of the **Electron Ion Collider (EIC).** The current design of these magnets is based on the conventional cosine theta configuration using Rutherford cable. As compared to most accelerator magnets, B1ApF has a small coil length (1500 mm) to coil aperture (370 mm) ratio (4.2). The relative benefit of the **Optimum Integral Design is significant in such** short magnets since it minimizes the loss in effective magnetic length due to ends.

COMPARISON BETWEEN DESIGN OPTIONS

B1ApF based on the Rutherford Cable

Optimum Integral Direct Wind Design

Compare the length of Straight Section (SS)

The present design of B1ApF is based on the cable magnet. It has a small Straight Section (SS). Moreover, End Plates (EP), needed to restrain the axial Lorentz forces take a significant space of the available slot-length.

In a direct-wind optimum integral dipole, the end plates will not be needed and the midplane turns (which create the maximum field) can extend the full length.

*This work was supported by STTR Grant No. DE-SC0021578 and by Brookhaven Science Associates, LLC under contract No. DE-SC0012704, with the U.S. Dept. of Energy.

A computer program, IntegralOpt, has been harmonics). It also creates files for OPERA3d &

Direct wind, optimum integral design offers a good value engineering option for EIC IR **B1ApF** and **B1pF**. Optimum integral reduces the field required by increasing the magnetic length and direct wind technology reduces the cost and schedule for one off magnets.

