

New Orleans, LA & Online Everywhere 13–17 December 2021

GC25C-0665 - Lifetime of Excess Atmospheric Carbon Dioxide

Stephen E Schwartz

Brookhaven National Laboratory

Abstract

The lifetime of excess atmospheric CO₂ (above preindustrial) x_{CO2} governs the future consequences of present x_{CO2} and those of future CO₂ emissions. Recent assessments of the decrease of x_{CO2} following abrupt cessation of anthropogenic emissions (zero emissions commitment, ZEC) inferred from studies with carbon-cycle (CC) models (*e.g.*, Joos *et al.*, *ACP*, 2013; MacDougall *et al.*, *BG*, 2020) vary substantially, with the fraction of x_{CO2} remaining in the atmosphere 100 years after cessation, $f_{CO2}(100) = x_{CO2}(100)/x_{CO2}(0)$, ranging from 0.55 to 0.85 (Figure 1*a*; Schwartz, *JGR*, 2018; Schwartz, in review).

In this study prior atmospheric and oceanic CO₂ and future x_{CO2} for ZEC were calculated with a 5-compartment global model. Model compartments are the atmosphere, upper and deep ocean, and labile and obdurate terrestrial biosphere (TB). Model parameters are obtained mainly from observation (*e.g.*, rate of uptake of heat by the deep ocean) and theory (*e.g.*, CO₂-dependent solubility of CO₂ in seawater); uptake of CO₂ by the two TB compartments is apportioned by parameterization, with parameters rather narrowly constrained by observations of CO₂ and radiocarbon. CO₂ is found to decay much more rapidly than in CC models; $f_{CO2}(100) = 0.41 \pm 0.8$ (1 σ), Figure 1*a*. These results indicate that cessation of anthropogenic CO₂ emissions would result in discernible decrease in atmospheric CO₂ on a time scale as short as a human lifetime, much faster than in current CC models.

Shown in Figure 1*b* is a quantity denoted $\tau_{\rm E}(t)$, the equivalent 1/*e* lifetime of $x_{\rm CO2}$, as a function of time subsequent to cessation of emissions *t*, evaluated as $\tau_{\rm E}(t) = -1/\ln f_{\rm CO2}(t)$. $\tau_{\rm E}(t)$ is a generalization of the relation between half-life of a decaying quantity and its 1/*e* lifetime and is an integral measure of decay over time *t*. The present model yields $\tau_{\rm E}(t)$ of excess atmospheric CO₂ about 100 years, much shorter than obtained with current CC models.

Figure 1. *a*, Fractional excess CO₂ $f_{CO2}(t)$ as function of time *t* following abrupt cessation of anthropogenic CO₂ emissions as calculated in a recent model intercomparison (MacDougall *et al.*, 2020) and with present model (best estimate, thick red, and uncertainty range); dotted black lines denote exponential decay with lifetime indicated at right. *b*, Equivalent 1/*e* lifetimes as function of *t*.

Plain-language Summary

Knowledge of the lifetime of excess atmospheric CO₂ (above preindustrial) x_{CO2} is essential to assess the consequences of present x_{CO2} and of future CO₂ emissions. Recent assessments of decrease of x_{CO2} following abrupt cessation of anthropogenic emissions (zero emissions commitment, ZEC), as inferred from studies with carbon-cycle (CC) models vary substantially, with the fraction of x_{CO2} remaining in the atmosphere 100 years after cessation $f_{CO2}(100 \text{ yr})$ ranging from 0.55 to 0.85. Here a 5-compartment global model was used to calculate prior atmospheric and oceanic CO₂ (based on emissions history) and future x_{CO2} for ZEC. Model compartments are the atmosphere, upper and deep ocean, and labile and obdurate terrestrial biosphere (TB). Model parameters are obtained mainly from observation and theory; apportionment of uptake of CO₂ by the two TB compartments is parameterized, with parameters rather narrowly constrained by observations of CO₂ and radiocarbon. Decay of CO₂ is much more rapid than obtained with current CC models, with $f_{CO2}(100 \text{ yr}) = 0.41 \pm 0.8$. These results indicate that cessation of anthropogenic CO₂ emissions would result in discernible decrease in atmospheric CO₂ on a time scale as short as a human lifetime, much greater decrease than calculated with current CC models.