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ABSTRACT.

Reactions of gases in liquid-water clouds are potentially important in the transformation
of atmospheric pollutants affecting their transport in the atmosphere and subsequent removal
and deposition to the surface. Such processes consist of the following sequence of steps:
Mass-transport of the reagent gas or gases to the air-water interface; transfer across the
interface and establishment of solubility equilibria locally at the interface; mass-transport
of the dissolved gas or gases within the aqueous phase; aqueous-phase chemical reaction(s);
mass-transport of reaction product(s) and possible subsequent evolution into the gas-phase.
Description of the rate of the overall process requires identification of the rate-limiting
step (or steps) and evaluation of the rate of such step(s). Identification of the rate-limiting
step may be achieved by evaluation and comparison of the characteristic times pertinent to
the several processes and may be readily carried out by methods outlined herein, for known
or assumed reagent concentrations, drop size, and fundamental constants as follows: gas-
and aqueous-phase diffusion coefficients; Henry's law coefficient and other pertinent
equilibrium constants; interfacial mass-transfer accommodation coefficient; aqueous-phase
reaction rate constants(s). A graphical method is described whereby it may be ascertained
whether a given reaction is controlled solely by reagent solubility and intrinsic chemieal
kinetic or is mass—-transport limited by one or another of the above processes. In the absence
of mass—trahsport limitation, reaction rates may be evaluated uniformly for the entire
liquid-water content of the cloud using equilibrium reagent concentrations. In contrast,
where appreciable mass-transport limitation is indicated, evaluation of the overall rate
requires knowledge of and integration over the drop-size distribution characterizing the
cloud.

NATO ASI Series, Vol. G6

Chemistry of Multiphase Atmospheric Systems
Edited by W. Jaeschke

© Springer-Verlag Berlin Heidelberg 1986



418

1. INTRODUCTION

A major emphasis of current atmospheric research is directed to acquiring an
understanding of the processes giving rise to the composition of liquid-water clouds. Such
research is motivated by the desire to understand the role of clouds in the cycling of
atmospheric constituents and more specifically the role played by clouds in the delivery of
soluble substances to the surface in precipitation.

The present paper focuses on the reactive uptake of gaseous substances by liquid-water
clouds. Such reactive uptake has been implicated in field studies of the chemical composition
of clouds (Lazrus et al., 1983; Daum et al., 1984) that have shown higher concentrations of
.aq'ueous sulfuric and nitric acids than can be accounted for by dissolution of soluble
particulate matter present in clear air. The importance of in-cloud reaction of sulfur and
nitrogen oxides is suggested as well on thermochemical and chemical-kinetic grounds (e.g.,
Schwartz, 1984a; Martin, 1984). Moreover, clouds, by their very nature, i.e., consisting of
highly dispersed small droplets suspended in air, would appear to be an ideal reaction
medium for promoting interphase mixing necessary for gas-aqueous reactions. These
observations suggest that rates of uptake of gases by cloud droplets and of aqueous-phase
reaction can be evaluated on the basis of thermochemical and chemical-kinetic considera-
tions, provided appropriate account is taken of the rates of mass-transport processes within
each of the two phases and at the interface. The objective of this paper is to outline methods
for carrying out such evaluations, with emphasis on the mass-transport processes. These
methods facilitate evaluation of the rate of aqueous-phase reactions in clouds and in turn of
the coupling of the chemical kinetics in the two phases, suitable for incorporation in
numerical models.

In addition to development of such methodology, considerable insight may be gained
regarding rate-controlling processes by defining and comparing the characteristic times of
the several processes. As it turns out, frequently one or another process is rate controlling
so that the rate of the overall process may, to good approximation, be treated as the rate of
the controlling process, thereby simplifying the analysis. In particular, if mass-transport
processes are sufficiently rapid compared to aqueous-phase reactions that mass-transport
limitation is negligible, then the rate of the overall process is governed entirely by chemiecal
kinetics. In this limit the rate of reactive uptake of the gas becomes independent of the drop-
size distribution characterizing the cloud, leading to substantial simplification of the
description. At the other extreme, for very rapid reactions, the rate of reactive uptake is
controlled entirely by the rate of gas-phase mass transport, which is strongly dependent on
cloud microphysical properties but only weakly dependent on the identity of the transported
species. In order to facilitate idenﬁficaﬁon of such situations, we develop readily applicable
criteria to ascertain whether th;se situations obtain or conversely whether the more
complete treatment is required. ’ ‘

In addition to the application of the methods presented here to description of atmospheric



it should be noted that these
methods are applicable as well to inter-

syétems,

pretation of laboratory studies of
reactions of gases with spherical drops.
In particular, considerations such as the
dependence of the observed reaction rate
on drop size may indicate the presence and
nature of mass-transport limitation in the

system under investigation.

2. STATEMENT OF THE PROBLEM

In order to describe the overall
process of a gas-équeous reaction in a
cloud, it is useful to consider this process
as consisting of a sequence of steps or
sub-processes. By achieving a description
of the several sub-processes it becomes
possible to describe the overall process.
For this purpose we describe the overall
process as consisting of the following

sub-processes:
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Figure 1. Schematic illustration of the sub-
processes comprising the overall gas-aqueous
reaction  process under examination in this
paper. Numbers labelling the several
processes correspond to the listing presented
in the text. A represents aqueous phase
reagent species transferred from the gas
phase; B, species in rapid equilibrium with A;
and C, product species, at the surface of the
drop (a) or in the interior (r); PA and pc
represent gas-phase partial pressures of A
and C at the surface of the drop (a) and at
large distances from the drop ().

1. Gas-phase mass transport of the reagent gas (or gases) to the air-water interface.

2. Mass transport across the interface and possible establishment of solubility

equilibria locally at the interface.

3. Establishment of rapid aqueous-phase equilibria invoiving the dissolved gas(es),

e.g., hydration and acid-dissociation equilibria.

4. Aqueous-phase mass transport of the dissolved species within the droplet.

5. Aqueous-phase chemical reaction(s).

6. Mass transport of reaction product(s) in the aqueous phase.

7. Possible evolution of volatile product species into the gas phase.

8. Subsequent gas—phase mass transport of the evolved gaseous product.

These processes are illustrated schematically in Figure 1. The objective of this paper will
be to describe these several processes and the coupling of these processes to constitute the

overall process. The approach will be by means of description of the space and time

dependence of species concentrations in terms of partial differential equahons. We further
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restrict our consideration to problems characterized by spherical symmetry, in which the
space dependenbe can be represented by the single radius variable r. Since most of the
processes of concern have been treated, separately, by a variety of investigators in a
variety of contexts (many are "classical” textbook examples), we make no apology for not
solving the equations here, but merely state results (often by a figure) with appropriate
citation. 2

A major reason for solving the time-dependent (i.e., partial) differential equation system
is to discern the characteristic time for relaxation of transients. These "characteristic
times" can often be surmised from dimensional considerations, although exact specification
is arbitrary to a numerical factor of order unity. At times long compared to the
characteristic time for a given process, the system reaches a "steady state" in which species
concentrations, fluxes, reaction rates, etc., no longer vary as a function of time. In this
steady-state limit, species concentrations are represented by an ordinary differential
equation in the radius variable r. Treatment in the steady-state limit greatly simplifies the
description of the system and, additionally, provides much insight.

For the system of interest here, which consists of coupled sub-processes, approach to the
steady state will be governed by the
slowest of the several processes. However,

AQUEQUS PHASE GAS PHASE
T

for sub-processes having greatly differ-
ing characteristic times, the simplifi-
cation afforded by the steady-state treat-
ment nonetheless obtains, since the

8,7 Pyl@)

"faster" system(s) will rapidly adjust to
changes imposed by the time variation of

the ‘'"slower" system, i.e., they will

"follow™ the slower system. In practice,

for cloud systems (in contrast to some S
laboratory studies) such quasi-steady- \\\
state situations will almost invariably be AN

[

14

the rule, as the cloud itself relaxes slowly

to externally imposed conditions, e.g., Figure 2. Hypothetical concentration profi-

adiabatic cooling imposed by lifting that les in gas and aqueous phases indicating

leads to condensational growth of cloud
droplets.

A schematic illustration of the spatial
dependence within and in the vicinity of a
single drop of the steady-state concen-

tration of a gas undergoing aqueous-phase

reaction is shown in Figure 2. Here the

region r > a represents the gas phase '

‘surrounding the drop and the region r < a

gradient in reagent concentration due to flux
of material into and within drop. Concentra-
tion scales of aqueous phase (r < a) left
ordinate and gas+phase (r > a) right ordinate
are chosen so that the same coordinate on
each scale represents the condition of phase
equilibrium, Departure from the uniform pro-
file at the "bulk® (r =<) value represents
the inability of mass transport to maintain
the reagent concentration as the reagent is
consumed. by aqueous-phase reaction. After
Schwartz and Freiberg (1981).
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represents. the interior of the drop. The scales representing aqueous concentration (left
ordinate) and gas-phase'parfial pressure (right ordinate) are chosen such that equilibrium
at the interface is represented by the same coordinate on each scale. For reactive'uptake of
the gaseous reagent negative departure from the uniform profile (at a value corresponding to
the large-radius or "bulk" concentration) may occur in either or both of the two phases
and/or at the interface because of the inability of mass-transport to maintain the uﬁiform
profile in the face of the aqueous reaction sink. For reaction higher than zeroth order in
the dissolved reagent (i.e., essentially all cases of interest), this negative departure from a
uniform profile results in a decrease in the reaction rate from that characteristic of a
uniform profile, i.e., there is mass-transport limitation to the rate of reactive uptake of gas.

A second motivation for introducing the characteristic times of the several processes is
that by appropriately comparing these quantities it is possible to discern whether the system,
at steady state, is mass-transport limited and to identify the limiting process, or,
alternatively, to establish that the rate of the overall process is governed by aqueous—-phase
chemical kineties. This approach was introduced in earlier papers from the author's
laboratory (Schwartz and Freiberg, 1981; Freiberg and Schwartz, 1981; Schwartz, 1984a) that
serve as the basis for much of the present paper.

The foregoing discussion has outlined what may be referred to as the microscale problem,
determination of the time and space dependence of concentrations, fluxes, and reaction rates
within and in the vicinity of a single drop. In order to describe the rates of these processes
in actual or model clouds (the "macro-scale problem™ it is necessary as well to take into
account pertinent physical properties of the cloud, most importantly the liquid water content
and the drop-size distribution. By considering the droplets that comprise the cloud to be
non-interacting it is ﬁossib]e to adduce a description of the coupling of the chemical
kineties in the two phases. The importance of this coupling has been pointed out in recent
work of Chameides and Davis (1982, 1983); see also the review by Chameides (1985) in this
volume. Description of chemical kinetics in the coupled two-phase system is achieved by
means of a set of ordinary differential equations in species concentrations in the two phases.
The transfer of material between phases is treéted by a formalism involving phenomeno-
logical mass-transfer rate coefficients whose definition takes into account the pertinent
cloud properties. The resulting system of ordinary differential equations may, under certain
conditions, be treated entirely like systems of coupled differential equations for a single-
phase situation that are conventionally employed in the description of gas-phase or aqueous-
phase chemical kinetics. V

The next several sections treat the individual sub-processes that comprise the overall
gas-aqueous reaction pertinent to liquid-water clouds. First, we set the scene with a brief
description of the properties of liquid-water clouds. The next section treats gas-aqueous
equilibria, in particular the Henry's law equilibrium between a gaseous species and its

" dissolved counterpart. In Section 5 we define séveral expressions for chemical kinetic rates
in mixed phase systems generally as well as in clouds specifically and define the relevant
characteristic times. In Section 6 we examine the mass-transport proc%sés pertinent to gas-
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aqueous ‘peactions in clouds, treating gas-phase and aqueous-phase mass-transport
mechanisms as well as the mechanisms of transport across the interface. Seection 7 examines
the kinetics of these mass-transport processes and develops expressions for evaluation of
mass~transport limitation. In Section 8 these results are applied to develop a formalism for

describing coupled gas—-aqueous reaction systems in clouds.

3. CLOUD MICROPHYSICAL PROPERTIES

We confine this discussion to a bare-bones deseription of physical properties of liquid-
water clouds pertinent to description of gas-aqueous reactions. For a more complete
description the reader is referred to appropriate monographs (Pruppacher and Klett, 1978,
pp. 9-21; Rogers, 1979, pp. 87-29; Mason, 1971, pp. 92-121).

Liquid Water Content.

The liquid water content is a key property of a cloud, governing the partition of a gas
between gaseous and aqueous phases. The liquid water content of clouds ranges from one-
tenth to several em3/m3, typically 0.3 to 1
em3/m3, or 0.3 to 1 parts per million by

volume (Clouds are mostly air!). In

description of partition of material and of 150 T T 1.5 x10°7
gas-aqueous kinetics, it is convenient to
express the liquid water content as a
dimensionless  volume  fraction, L, P 1.
E N
typieally (0.3 to 1) x 1075, ” o
§ £
- L2
zlo E
Slo Py
- dos =2
Drop-Size Distribution.
0
15
bt . crrs DROP RADIUS a,
The distribution of.drop sizes within a G
cloud exerts a major influence on the Figure 3. Spectra of droplet number density
L. . and volume fraction for continental cumulus.
kinetics of mass-transport processes N = 700 cm™3; L = 0.51 x 1079, Data of

within clouds. Observed cloud-droplet Knollenberg (1981).



421

size distributions dN/da are typically

40 T T 8xio-8
rather narrow, peaking at some low value (2N,
. . da L, _4 .3 N
(below 8 um diameter) and decreasing - (5er=g modi5g)
rather strongly with increasing size. _ 30F i —46
(Drop sizes are most commonly referred to Ei E — 55
-
by diameter, but algebraic expressions, ! i K
1 ~
spectra, etc., are frequently given as a : 20r J{ L., 4 €
- i -
function of radius a8, a convention we S ] ; i 33
retain here.) Examples of measured cloud " :--JI b .
) L ! 4
droplet size distributions are presented in J: .
r- ]
Figures 3 and 4. For other examples see, ,._j L".
e.g., Pruppacher and Klett (1978, pp. 10- o} P : = L-‘so
21) and Mason (1971, pp. 98-113). The total DROP RADIUS a, um
number of drops per unit volume is given
as the -integral over the number Figure 4. Spectra of droplet number density
distribution, and volume fraction for aged stratus.

N = 300 cm™3; L = 0.34 x 10"°, Data of
Knollenberg (1981).

dN
N = [(E;) da.

In addition to the number density distribution it is also useful, particularly in the
context of aqueous-phase reactions, to examine the distribution of liquid water content as a

function of drop size,

dL 4 dN
—_—= _ﬁ’a3 —_—,

da 3 da

also shown in Figures 3 and 4. Because of the greater volume of the larger droplets, the
distribution of liquid-water content peaks at diameter values substantially greater than the
number distribution. The liquid-water content is given as the integral over the partial

volume distribution,

dL 4 N
L= [ da=-7 [ad (=) da.
da 3 da

Examination of representative cloud drop spectra permits us to bound the size range of drops
concern in examination of gas-aqueous reactions in clouds. We take this range to be roughly
1-30 pm radius or 2-60 um diameter.

It is of interest to consider the mean separation of cloud droplets N-1/3, relative to the
dimension of these ’droplets,‘ to examine the adequacy of treating cloud droplets as non-
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interacting. For a "monodisperse" cloud of radius a

4
L = N —wa3
3

whence
N-1/3 = A™)1/3 1-1/3 3 = 1.61 L-1/3 a.
3

For L 31076, N-1/3 ~ 102 a. The large interdrop spacing relative to drop size supports the
model whereby gas-aqueous reactions in a cloud are treated as the summation of the
processes taking place in the vieinity of and within non-interacting drops.

It is often convenient to represent the cloud drop-size distribution by an algebraic
expression. One convenient such representation is that of Khrigian and Mazin (see
Pruppacher and Klett, 1978, pp. 11),

—_ = A 32 e‘Ba

where A and B are parameters that may be adjusted to match the mean drop radius @ and
liquid water volume fraction L, viz.,

B

3/a, and

3 _ 36
(—) — L a6 ~ 1.45 L a-6 .
4 5!

For this distribution
N=(—) —1L a3 »0.107 L 873 .

For L = 0.5 x 1078 and-5= 5 x 1074 cm, N = 430 em~3. Model distributions such as this are
useful for the insight that may be gained in modeling gas-aqueous reactions in clouds.
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Sedimentation Velocities.

The gravitational sedimentation of cloud droplets is important in the present context
because of the convective flows induced thereby and the possible resultant enhanced mi)gng
pates in either the gas or aqueous phase. This sedimentation, of course, is ultimately
responsible for collisional growth of droplets and the delivery of precipitation to the
surface. The focus here, however, is on the implications for mass-transport.

A first approximation to the terminal sedimentation veloeity of cloud droplets is given by
Stokes law for flow of a sphere in a viscous medium (e.g., Pruppacher and Klett, 1978, p.
322),

2 8.2 g (@w-@a) 2 82 g @w )
U = . 3.1
® $ Na 9 na (

Here g is the gravitational constant, Cuw
and @, are the densities of water and air,

respectively, and ng is the viscosity of EREARML ALY

air. Departures from the velocity are [ STOKES APPROXIMATION ——,

found at both ends of the drop-size range °E —g

of concern here (Pruppacher and Klett, 1 i %

loc. e¢it.). At the low end an increase in & I 4

velocity is caused by the departure from % 1o -

pure continuum flow; under atmospheric § ; é

conditions this departure amounts to 17% E I i

for a2 = 1 um and 1% for a = 10 um. At the % I

high end of the drop-size range the Stokes - ? —§

law overestimates actual sedimentation E E

velocities as drag forces on the drop are [//f+—— STOKES APPROXIMATION 7}

increasingly influenced by the drop 0.0 Ll e

velocity; this departure amounts to -6% DROP DIAMETER.. pm

for a = 30 pm and -13% for a = 42 pm. Figure 5. Droplet gravitational sedimenta-

Nonetheless, at least for first approxi-- tion velocity as a function of diameter.
Departure from Stokes formula is indicated at

mation the Stokes formula may be employed both ends of the diameter range. Evaluated

for evaluation of sedimentation velocities for 10 °C. '

of cloud drops.

In evaluation of sedimentation velocities
it is necessary to employ the viscosity of air. A convenient approximation is given by
Pruppacher and Klett (1978, p. 323)..
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nalc.g.s.) = (1.72 + 0.0049 T) x 1074, T (°C) .

The sedimentation velocity as a function of drop radius is shown in Figure 5.

Cloud Composition.

Measurements of the concentrations of dissolved constituents in cloudwater indicate, not
surprisingly, a similarity in composition to that of rain (Daum et al., 1984, and references to
earlier work therein). Principal cations are HY and NHy*; principal anions are S04~ and
NOg~, the distributions varying with location and altitude, as well as with time at any given
location. Concentrations range from high values ~10~3 equivalents/liter to substantially
lower concentrations in remote locations. There is some indication of an inverse variation of
concentration with liquid water content suggestive of dilution or concentration of non-
volatile solutes associated with condensation or evaporation of water, respectively.
Considerably higher concentrations of dissolved constituents (10-2 equivalents/liter or
more) have been reported for ground fogs that are evidently characterized by rather low
liquid water content (Munger et al., 1983).

The foregoing summary supports the approach adopted here of treating cloud water in the
first approximition as sufficiently dilute to be treated as ideal solutions. However, it should
be noted in situations where high accuracy is necessary that departures from ideality become
appreciable (5 to 10 percent) at concentrations greater than 10-3 equivalents/liter (Adamson,
1973, p. 521). »

Few measurements have been reported of concentrations of trace gases in interstitial air,
i.e., the air in which the cloud drops are suspended. Evidently highly soluble gases (e.g.,
NH3, HNO3) are present at very low concentration consistent with rapid scavenging by cloud
droplets (Daum et al., 1984). Gases of low solubility (e.g., O3, NOg) are commonly present
within clouds, and occasionally appreceable concentrations of SOz are encountered.

Little is known as well about the concentration and composition of interstitial aerosol,
i.e., particles present within clouds that have not been activated to become cloud drops.
Several recent studies suggest that most but not all (by mass) of soluble aerosols present
prior to cloud formation is rapidly (seconds to minutes) incorporated into cloud droplets by
nucleation (Leaitch et al., 1983; Radke, 1983; Hegg and Hobbs, 1983). Measurements of the
composition of the interstitial serosol and comparison with corfesponding cloudwater
composition support this supposition (Daum et al., 1984). Presumably the non-nucleated
interstitial aerosol is concentrated in the smaller size range, for which supersaturation

sufficiently great to achieve nucleation has not been attained.
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4. GAS-AQUEOUS EQUILIBRIA

A major consideration in describing mass transport and chemical kinetics of gas-liquid
reactions is the equilibrium distribution of the reagent gas or gases between the two phasgas.
For a detailed discussion of such equilibria pertinent to atmospheric gases, see the review by
Warneck (1985) in this volume. For dilute solutions the distribution of a gas between the two
phases is given by Henry's law, which states that the equilibrium concentration of a gas
dissolved in a liquid is proportional to the partial pressure of the gas,

[X(aq)] = HxpXx., (4.1)

where Hx is the so-called Henry's law coefficient. A variety of units have been and continue
to be employed for these several quantities. A particularly convenient set of units is px in
atmospheres and [X(ag)] in molar, consistent with the thermodynamic standard states chosen
as 1 atm and 1 M, respectively, and Hy, therefore, in units of M atm~1, Hy is thus seen to be

the equilibrium constant of the reaction
X(g) = X(aq)

and is related to the difference in standard free energies of formation of the gaseous and

aquated species as

Hx = exp(- 4G°/RT)

where
4G° = A¢G°[X(aq)] - 4fG°[X(g)] .

In the absence of specific chemical forces, Henry's law coefficients are fairly well
correlated with the physical properties of solute and solvent. However, for polar, protic
solvents (e.g., water) chemical forces frequently dominate, and Henry's law coefficients can
differ greately for "similar" solutes. Examples of Henry's law coefficients of several
atmospheric gases are given in Table 1. Henry's law coefficients generally increase with
decreasing temperature, reflecting a negative enthalpy of solution.

In the case of gases which physically dissolve in water without further resction the
Henry's law coefficient may be measured directly, by allowing the system to reach
equilibrium and measuring px and [X(ag)]. Similarly, in the case of a gas that establishes a
solution-phase chemical equilibrium, e.g.,
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809(aq) H* + HSO3

HSO3 Ht + SO3F

the Henry's law coefficient may be deter mined from consideration of the several equilibria
(e.g., Johnstone and Leppla, 1934). However, in the case of a gas that reacts rapidly and
irreversibly to form much more highly soluble products, e.g., NOg to form NO9™ and NO3~,
the Henry"s law coefficient can generally be determined only by indirect methods. Such
methods include thermochemical cycles involving the aqueous-phase species (e.g., Schwartz

Table 1

Henry's Law Coefficients of Some Atmospheric Gases
Dissolving in Liquid Water?

1

Gas H, M atm™ Reference
0, 1.3¢-3)b 1
NO 1.9(¢-3) 1
Cy B, 4.9(-3) 1
NO, ¢ 1 (-2) 2
03 1.3¢-2) 3
N, 0 2.5¢~2) 1
co,d 3.4(-2) 1
50,4 1.3 4
CH, ONO, © 2.6 5
PANC»€ 3.6 S
HNO, 4.9(1) 6
NHg 4 6.2(1) 7
H,CO 6.3(3) 8
Hy0, 1 (5) 9
HNO4 4 2.1(5) 6

a. T = 259C except as noted.

b. The notation 1.3(~3) represents 1.3 x 1073 .

c Physical solubility; reacts with liquid water.

d Physical solubility, i.e., exclusive of acid-base
equilibria.

e. T = 220cC.

References: 1, Loomis (1928); 2, Schwartz and White
(1983); 3, Briner and Perrottet (1939); 4, Johnstone
and Leppla (1934); 5, Lee et al. (1983); 6, Schwartz
and White (1981); 7, van Krevelen et al. (1949);

8, Blair and Ledbury (1925); 9, Martin ‘and Damschen
(1981). :
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and Whité, 1981; Schwartz, 1984b) and kinetic studies of the reactive uptake (e.g., Schwartz
and White, 1983).

In considering the solubility of gases that undergo rapid reversible aqueous-phase
reactions such as acid-base ionization equilibria, it is frequently convenient to extend the
definition of Henry's law by defining a pseudo Henry's law coefficient that encompasses jhe
totality of the dissolved species. For example, in the case of SOg we define

H§(1v) = [S(IV)1/pso,

([SOg3(ag)] + [HSO3~] + [SO3=])/pso2

H a K1 N K1Kg
= SO +
2 [H*]  [H*]2

where K1 and Ky are the first and second

jonization constants of sulfurous acid. It o

is seen that H§(IV) so defined depends on ,
the hydrogen ion concentration, and thus 10'°
hat a linear relation between [S(IV)] and
PSO, Will obtain only for a solution that

| N(Z)/HNO, ()

N{-TII)/NH, (g)

is adequately buffered compared to the e
incremental hydrogen ion contributed by ;
the acid dissociation. Examples of pseudo : o
Henry's law coefficient for some acidic L
and basic gases of atmospheric interest 1o
are shown as a function of solution pH in

i ! 1
Figure 6. It is seen that the total amount ' 3 4 5 6

pH

of dissolved material may greatly exceed
that dissolved by Henry's law alone, i.e.,

that H" may greatly exceed H. Figure 6, Effective Henry's law coefficients

The equilibrium ratio of concentration for gases which undergo rapid acid-base
dissociation reactions in aqueous solution, as

of a species in the gaseous and aqueous a function of solution pH. Buffer capacity of

phases is of particular importance in solution is assumed to greatly exceed incre-
R iderati Thi " mental concentration from uptake of indica-
mass—transport considerations. 1s rato ted gas. From Schwartz (1_9848).

is given according to Henry's law as

[X(aq)]  Hxpx
= - = HxRT , (4.2)
[X¢(g)1 px/RT ~
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where we have made use of the ideal gas law. For Hy in M atm™! the universal gas constant R
is taken as 0.082 atm M~! K-1, and RT =~ 25 atm M~1. For a gas undergoing rapid aqueous-
phase equilibrium; Hx must be replaced by H)?

5. GAS-AQUEOUS CHEMICAL KINETICS

In view of the multi-phase nature of the system and of potential spatial nonuniformities,
it is necessary to specify expressions for rates of chemical reactions with some precision.
We restrict this discussion to reactions which occur in the aqueous solution phase. However,
it is useful to express the reaction rate either in aqueous-phase units M s™) or, for
comparison to gas-phase rates, in equivalent gas-phase units (atm s~1).

The local instantaneous aqueous—phase reaction rate R(a,r,t) is, in principle, a function
of drop radius a, radius within the drop r, and for non-steady-state problems, of time t. It
is this rate that is related, by a chemical rate léw, to the local concentrations of reagents,
catalysts, etc. we explicitly employ the chemical kineticist's convention of rate--moles (of
reaction, as written) liter~! second~1, as distinct from that frequently employed in mass-
transport discussions--moles (of reagent of interest) liter~1 second~1, Thus for the reaction

2 NOg(aq) + H20 — 2 HY + NOg~ + NO3~ [1]

1 dp 3 di
R; = - — — [NOg(a = — [NO3~] .
L 2 dt zt8q dt 3

The notation * dj / dt [X] denotes the rate of increase/decrease of [X] due to reaction [1],
i.e., the local flux of [X] through [1]. This would differ from the net rate of change in [X]
if other processes were occurring simultaneously, e.g., other reactions or mass-transport
processes. Lee and Schwartz (1981a) report a rate law for [11,

R1 = k3 [N.Oz(aq)]2

by which they mean that the flux of NOg(aq) through [1 is

dy
P [NOg] =--2 Ry = -2 kj [NOg(aq)]2 .

For a reaction at steady state we niay drop the explicit dependence on t and write R(a, r) or
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occasionally Rgg(a,r).
The average rate over the droplet volume is given as

- 4 a
R(a) = (;’/Ta3)‘1f4‘n’r2 R(a,r) dr . (541)
q .

For a cloud characterized by a distribution of drop radii, the average rate, on a liquid water

basis, is
4 aN_
<R> = L-1 I(g'n‘a3) () R(a) da . (5.2)
a

For a "mono-disperse" cloud <R> = R(a).

It is often useful to express the reaction rate in partial pressure units, i.e., atmospheres
(of reaction, as written) second~l, which is evaluated as

(R) = LRT <R>. (5.3)

Finally we introduce the fractional rate of removal of a gas-phase reagent X, having units
s~1 (or commonly % h-1)

@X = vx(R)/px ; (5.4)

here VX is the stoichiometric coefficient of X in the reaction as written.

Phase-mixed System.

It is instructive to consider these kineﬁc expressions in the limit of Henry's law
equilibrium being satisfied. Reaction rates in this "phase-mixed limit", which are readily
evaluated in terms of gas—phase reagent concentrations by means of the Henry's law
solubility equilibria and aqueous-phase kinetic expressions, represent an upper-limit
reaction rate, i.e., no mass-transport limitation. We consider initially a first-order reaction

R(a,r) = k(1) [X(aq)1(a,r) . (5.5)
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Here we explicitly note that [X(a@)] in principle depends on a and r; however, by assumption

of Henry's law equilibrium,
-[X(aq)1(a,r) = HXpx ., (5.6)

the aqueous-phase reagent concentration is independent of a and r, and

<R> = k(l)prx .
In turn,
(R) = k(1) LRT Hx px -

Finally, the fractional rate of reaction is
Px = k(1) LRT Hx .

Similar expressions obtain for situations other than simple first-order reaction of a single

reagent. For example, the reaction of dissolved sulfur(IV) with HpOg2,
S(IV) + Hg09 — S(VI) + Hp0
is characterized by a pH-dependent effective second-order rate constant:
R(a,r) = k(2) [Hy0y] [SC(IM] .
By assumption of Henry's law equilibrium for both species,
<R> = k(%) Hpy0, HS(IV) PHp0, PSOy -
The fractional reaction rates for the two reagents are
®so, = k(2) Huyo, H§(1V) LBT D Hp0 -
. and
Cuy0, = k(2) Huyo, H§(1v) LBT PSOp -

Similarly, in the case of second-order reaction of NOg,
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R(a,r) = k(2) [NOg(aq)12, (5.7
<R = k(2HNQ,? ‘pN022 , (5.8)
and
CNnog = 2 k(2) Hyoy? pro, »

where the factor of 2 represents the stoichiometric coefficient of NOg in [1].

Characteristic Time.

It is useful to define a characteristic time of aqueous-phase reaction that permits
examination of mass-transport limitation by comparison to characteristic times of mass-
transport processes. This can be defined on dimensional grounds as the ratio of the aqueous-
phase concentration of a species X to the steady-state flux of X through reaction,

driX1

T = - [X(ag)1/( e

dgs = [X(aq)]/VxRgg(a,r) . (5.9)

For the Hy09-S(IV) reaction the effective first-order rate coefficients for reaction of S(IV)

and H9O9 are ]

(1) _ 2

ks(vy = k2D [Hz0g] . (5.10)
and

(1) _ 2
KHy09 = k(2) [s0g1 .

Similarly, for the NO3-NOg reaction

(1)
kNoz = 2 k(2) [NOg (ag)] . : (5.11)

These quantities may be expressed in terms of gas-phase partial pressures by means of
Henry's law equilibria.
For reaction by simple first-order kinetics,



432

driX]
= - k(1)[x]
dt
such that
T o= [k(1)]-1 ., (5.12)

i.e., the inverse of the first-order rate coefficient. For more complex rate expressions it is

useful to define an effective first-order rate coefficient,

dr [X]
k(1) = — / [X(Caq)] (5.13)

such that Tp continues to be represented by eq. (5.12).

6. MASS TRANSPORT PROCESSES

We outline here the pertinent processes responsible for mass transport separately in the

gas and aqueous phases and across the gas-aqueous interface.

Gas Phase.

For systems with dimension much greater than the molecular mean free path (a >> &, or
Knudsen number Kn = A/a << 1) mass~transport is considered to be adequately described as
that of a continuum fluid, i.e., without explicit recognition of the motion of individual
molecules (e.g., Hidy and Brock, 1970, p. 15). In ajr under standard conditions the mean free
path is approximately 6 x 1076 cm (0.06 um) well less than the radius of cloud particles (3 1
pm). Hence the mass transport of gas molecules to (or from) cloud droplets may be treated as
a continuum process.

Transport of a reagent gas to a cloud droplet will occur at least at the rate governed by
molecular diffusion, as augfnexifed by any  organized flows, e.g., turbulent motions of
convection induced by the sedimentation velocity of the cloud droplet. Evaluation of the

mass-transport rate as governed by molecular diffuéion alone, therefore, yields a lower
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pound to this rate, and if no gas-phase mass—transport limitation is indicated by this rate,
that conclusion holds a fortiori in the presence of organized flows. In fact, however, the
influence of such flows relative to diffusion would appear to be minimal for the range of
drop sizes characteristic of non-precipitating clouds.

To examine the importance of turbulence-enhanced mass transport, Brock and Dul;ham
(1984) note that the characteristic scale length of atmospheric turbulence is

r¢ = (Dg3/8 )1/4

where Dg is the gas-phase diffusion coefficient and £ is the turbulent energy dissipation
rate. The criterion for the unimportance of turbulent mass transfer relative to diffusive is

a << ryg.

For Dg30.1 em? s=1 and £ = 10 em~2 s~3 (low atmospheric turbulence) or 104 cm? s=3
(intense turbulence), rt = 0.18 and 0.018 cm, respectively, indicating appreciable turbulence-
induced mass transport only for the larger drops at intense levels of turbulence. By this
criterion we may neglect turbulence-induced mass transport in evaluation of gas-phase mass
transport rates.

Convective mass-transport induced by droplet sedimentation is treated by Pruppacher and
KlettA (1978. p. 440 ff.) in terms of measured evaporation rates of falling droplets. For low
Reynold number (Re < 2.5) the ratio of convective to diffusive mass-transport in air is
approximated as 0.086 Re. Thus the eriterion that convective mass transport not exceed 10%
diffusive mass transport is satisfied for Re < 1.16. This value of Reynold number correspond
to a = 42 um (Pruppacher and Klett, 1978, p.326). Thus again molecular diffusion is seen to
represent the major gas-phase mass-transport mechanism for droplets in the size range
pertinent to clouds.

The gas-phase mass-transport of SOy to water droplets falling freely in air was modeled
numerically by Baboolal et al. (1981) taking into account the flow field induced in the gas by
the falling drop. Drop radii treated were 10, 71, 142, and 306 um. Significant enhancement of
the steady-state uptake rate beyond that due to diffusion in stagnant air was found for all
drop radii except 10 um. This enhancement amounted to approximately 50% at g = 71 um. For a
= 40 um the enhancement would appear to be about 20% (Baboolal et al., 1981, Figure 2). It
would thus appear that the treatment of gas-phase mass transport by diffusion alone yields a
close approximation to the uptake rate throughout the size range of interest for liquid-water
clouds..
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Gas-Phase Diffusion Coefficients.

Measurements are available for the diffusion coefficients of a number of species of
atmospheric interest in air, some which are listed in Table 2. (Since diffusion coefficients
vary inversely with total pressure it is commonly the product P Dg that is tabulated.) It is
seen that values of Dy (at 1 atm) are of the order of 0.1 em?2 s1, a value that we shall
employ in examples treated below.

For gases whose diffusion coefficient in air has not been measured there are a number of
closely related semi-empirical equations by which binary diffusion coefficients (including
diffusion coefficients in air) may be estimated from the properties of the individual
molecules. (For review see Sherwood et al., 1975, pp- 10-24; Marrero and Mason, 1982.) Lugg
(1968) has compared the performance of 9 such equations for up to 147 compounds and found
that the formula of Wilke and Lee (1955) yields a value within 5% of the observed value in 70%
of the cases. A similar, somewhat easier to apply formula given by Fuller et al. (1966) also
appears to yield good predictions for Dg.

The temperature dependence of the diffusion coefficient at 1 atm, at least for relatively

narrow ranges of temperature, is given as
n
Dg T

with values of n ranging from 1.5 to 2 (Chapman and Cowling, 1970, p. 264).

Aqueous Phase.

Mass transport within aqueous cloud droplets will, analogously to gas-phase mass
transport, take place by molecular diffusion as enhanced by any organized flow. Such an
organized flow may be induced by coupling of momentum from the relative motion of the
falling drop within the air medium, and thus is increasingly 1mportant for larger drops.
Pruppacher and colleagues (cf. Pruppacher and Klett, 1978, pp. 305-310) have examined
internal circulation induced by droplet sedimentation and conclude, at least for smaller
drops (< 100 um radius), that the Stokes-flow approximation accurately approximates the
actual flow field. This approximation yields for the radial velocity within the drop

’\a r2
Ujp ¥ — U (— - 1) cos © (6.1)
2nw a2
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where U is the terminal fall velocity of the drop, and ny and ny are the viscosities of air
and water, respectively. © is the angle from the flow direction. In turn, from the expression
3.1) for U,

g a2 Cw 2 .
Ujp ¥ —————— (— - 1) cos © . ‘ (6.2)

9 nw a2

Equation (6.2) may be used to estimate the Peclet number characteristic of the system, which
is a dimensionless index of the relative importance of convective to diffusive motion--Pe 2 1
is indicative of significant convective mass transport (Brock and Durham, 1984)--

Table 2

Diffusion Coefficients of Some Representative Gases in Air

P Dg

Gas atm cn? st Reference
Hy 0.712 1

He 0.687 2

H0 . 0.264 2

NH3 0.234 3

CH, 0.228 1

09 0.207 1

€O, 0.159-0.170 1,2,3
HCOOH 0.153 4

CH3 OH 0.152 4

CH3 CHp OH 0.118-0.133 2,4
Cl, 0.128 3

S0, 0.126 3

CHg COOH 0.124 4

Br; ' 0.094-0.106 3,4
cs, 0.105 4

References: 1, Chapman and Cowling (1939). Data for 273K
scaled to 298K as T1°75; 2, Sherwood et al. (1975).
Data for 313-317K scaled to 298K as T1'75; 3, Andrew
(1955). Data for 293K scaled to 298K as T1'75; 4, Lugg
(1968).
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a ujp(max)

Dy

g Quw a3
9 nw Dy

-

For a = 1, 10, 40 pm, Pe evaluated in this way has values 10~3, 1, and 30, respectively,
suggesting significant convective mass transport for a > 10 pm.

One additional point to be noted about equations (6.1) and (6.2) is the dependence of
internal velocity on the viscosities of the two media, which reflects the mechanism of
coupling of momentum between the two phases. As pointed out by Brock and Durham (1984)
use of the bulk viscosity of water in these expressions assumes applicability of this quantity
to the interface. This condition might not hold in the presence of a surfactant film (Gill et
al., 1983), which would reduce the surface viscosity and thereby decrease the internal
mixing from that evaluated using the bulk viscosity.

The mass transport of S(IV) within droplets having internal flow fields characteristic of
drops falling freely in the atmosphere has been modeled by Baboolal et al. (1981). Drop radii
treated were 10, 71, 142, and 306 pm. Significant enhancement of the aqueous-phase mass-~
transport rate over that due to diffusion alone as calculated for a stagnant drop was found
for all drop radii except 10 pm. This enhancement amounted to approximately 50% at a = 71
um. It is not possible based on the data of the paper to estimate the enhancement for a = 40
um, but it would appear to be substantially less. This treatment would thus suggest that for
the present it is appropriate to proceed with analysis of mass-transport rates based on
molecular diffusion only, but with recognition that convective enhancement may be
appreciable for a > 10 pm.

Aqueous-phase Diffusion Coefficients.

Diffusion coefficients of gases and other solutes in dilute solutions have been the subject
of much study (Himmelblau, 1964; Wilke and Chang, 1955). Examples of some measured
diffusion coefficients of dissolved gases are given in Table 3, and are seen to be~2 x 10-8
em2 s~1 for many gases at 25 C. For simple solutes, i.e., solutes which do not undergo
chemical reactions in solution, the semiempirical expression of Wilke and Chang (1955) gives
a good estimate of the diffusion coefficient in terms of solute and solvent properties. In
particular we note that there are two contributions to the temperature dependence,
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Table 3

Diffusion Coefficients of Some Representative Gases in Water

Dy
Gas 1075 em? 57!
He 5.8
Hy 3.4 - 4.1
N, 0 2.5
0, 2.1 - 2.
N, 1.8 - 2.2
CoH 2.0
50, 1.8 - 2.0
Ar 1.5 - 2.0
co, 1.8 - 1.9
c1, 1.4 - 1.7
CHy C1 1.5
HyS 1.4

Source: Himmelblau (1964); T = 259C.

DT q‘l

since the viscosity of solvents is generally temperature dependent. For water as solvent this
viscosity has a temperature variation

T
E(—-)—— = exp [2140 (l- - -1—)]
n(25°) T 298

that substantially exceeds the fractional variation in T.

In the case of solutes that dissociate into ionic constituents, e. g., S0y = H* + HSO3™,
the diffusion coefficients of the ionic species may be calculated from the equivalent ionic
conductivities j by the Nernst-Einstein relation (e.g., Adamson, 1973, p;i. 546-547) as

A4RT

Di =
z;F2

where zi is the ionic charge, and F is: the Faraday constant; here R is-in joule mol~1 K-1, -
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The ambipolar diffusion coefficient of the two ions (which must diffuse together) is

2 Dy Dy

Dl +D2

Diffusion coefficients of 1-1 electrolytes evaluated in this way are also of the order 2 x 105

em? s71,

Interfacial Mass Transport.

Despite the fact that for the total pressure and droplet size range characteristic of cloud
gas-phase mass transport to (and from) cloud droplets is squarely in the continuum regime,
nonetheless mass transport across the air- water interface, as across any interface is,
ultimately, a process that involves individual molecules. Recognition of this principle, in
conjunction with the kinetic theory of gases, permits the number of collisions of a gas-phase
species X per unit interface area per unit time (the flux to the surface) to be evaluated as
1/4 nx VX, where nx is the number density of gas molecules and ¥x is the average mole-
cular speed (Hertz, 1882; Knudsen, 1913). In turn on a molar basis the collision flux is

6.coll = X [x(g)) vx = = px ¥
X e (g X = 7 PX ¥X/RT , (6.3)

where

9x = (8 RT/emp1/2 . (6.4)
Here My is the molar mass ("molecular weight") of species X; for Mx in g mol™! and ¥x in
em s-1, R has units erg mol~1 K~1, This expression was initially applied to a discussion of
condensation and evaporation rates of pure substances by introduction of a mass

accommodation coefficient « representing the fraction of collisions resulting in con-

densation, yielding for the condensation flux
| —
6X00nd = -4— & px ‘—’XLB'I‘ (6-5)

As noted by Knudsen (1913) it is not. possible a priori to specify the value of the
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accommodation coefficient. This point was underscored six decade‘s‘ létef by Sherwood et al.
(1975, p. 183), who observe that "Not only is there no useful theory to erﬂploy in predicting
a, there is no easy way to experimentally measure it."

In the present context we are interested not so much in the self accommodation
coefficient, as defined above, but in the accommodation coefficient of a solute gas impinging
on a solvent, specifically water. However we note that equations (6.3) and (6.5) are
applicable as well to partial pressure (specified for the interface) so that the formalism
initially developed for c¢ondensation is applicable also to dissolution.

With respect to measurement we note that accommodation coefficients may be determined
from measurement either of the uptake rate or of the evaporation or desorption rate, the
latter by means of detailed balance arguments--at equilibrium the rate of evaporation is
equal to the rate of condensation.

The values of reported accommodation coefficients vary considerably. In a number of
studies with pure substances including metals (Knudsen, 1913; Langmuir, 1913), solid organic
fatty acids and alcohols (Littlewood and Rideal, 1955) and liquid organics (Maa, 1967, 1970;
Chang and Davis, 1976) the accommodation coefficient was determined to be unity. Other
investigators, however, report values of « as low as 10~9 (see the discussion and references
in Sherwood et al., 1975, pp. 182-184; also, Paul, 1962). Experimental difficulties associated
with the measurements include both accurate knowledge of the surface temperature and
maintenance of a surface that is free from surfactant films. It is suggested (Sherwood et al.,
1975; Chang and Davis, 1976) that if both of these problems are resolved, the available data
suggest that the evaporation coefficient or self-accommodation coefficient for liquids is
essentially unity.

With respect to the self-accommodation coefficient of water there is a disquieting lack of
agreement between investigators. Pruppacher and Klett (1978, pp. 133-135) summarize a
number of these studies, reporting values of « ranging from ~ 0.01 to 1. In eddition to the
studies cited there one would call attention also to the work of Maa (1967, 1970), which
reports o = 1 for a study with a water jet, and of Wagner (1982) monitoring droplet growth in
an expansion cloud chamber, also reporting « = 1. Pruppacher and Klett observe that the
data fall into two sets, noting that studies performed with rapidly renewed surfaces exhibit
higher values of « (0.2 to 1). This distinction would be consistent with inhibition of mass
transport at the interface in static experiments by unavoidable surfactant films. It should be
noted that even monomolecular films can inhibit the evaporation rate from water surfaces
(La Mer, 1962). It should also be noted that surfactant materials might be commonly present
on atmospheric aerosols (Graedel et al., 1983) and thereby serve to inhibit mass transfer to
cloud droplets formed from such aerosols. Pruppacher and Klett suggest that the condition of
a rapidly renewed surface would be unlikely to be realized in clouds and propose that the
lower values of @ (0.01 to 0.07) be employed in cloud physics computauons.

Relatively few studies have been performed examining the accommodation coefficient for
uptake of solute gases by water. Danckwerts (1970, p. 69) suggest that there is no appreciable
surface resistance for uptake of gases such as COg by water, except in the presence of
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surfactants. However examinations of the papers cited by Danckwerts in support of this
statement (Raimondi and Toor, 1959; Harvey and Smith, 1959) suggests that these studies were
insensitive to values of a greater than perhaps 10-3, although indeed a severe decrease in
X (to 6 x 10~6) was indicated in the presence of surfactants (Harvey and Smith, 1959).

In summary, there is a growing body of information suggestive that the self accommo-
dation coefficient of liquids approaches unity for clean surfaces. However relatively little
information is available regarding the magnitude of the accommodation coefficient of
potential reagent gases either on clean liquid-water surfaces or on surfaces of natural cloud
droplets. For this reason we must treat & somewhat as an adjustable parameter and examine
the sensitivity of mass-transport rates to the value of this quantity. As it turns out, for
representative atmospheric conditions (as tested in Section 7), overall mass-transport rates
are relatively insensitive to values « 2 0.01, but become increasingly sensitive to lower
values of &. These observations suggest the importance of laboratory study of for various
solute gases both on clean surfaces and on surfaces representative of natural clouds.

7. MASS-TRANSPORT KINETICS

In this section we examine the kinetics of mass-transport processes in the gas-phase, at
the gas-water interface, and in the aqueous phase from the perspective of ascertaining the
influence of mass-transport kineties upon the overall rate of the gas-aqueous reaction.
Specifically, it is the objective of this section to develop approaches to evaluating the
departure of the overall rate from that which would obtain in the absence of mass-transport
limitation as a function of the pertinent conditions--solubilities, rate constants, drop size,
acecommodation coefficient, reagent concentrations. This discussion thus focuses upon
concentration profiles about and within a single drop of radius a (cf. Figure 2) leading to an
evaluation of R(a) (as defined in equation 5.1). A secondary objective of the discussion is to
define the conditions where mass-transport limitation is sufficiently small, say 10%, that the
Kkinetics of the system may be approximated as phase-mixed. In this limit description of the
kineties is considerably simplified.

In this discussion we consider first gas-phase mass transport, then interfacial, and
finally aqueous-phase. Mass-transport in both phases is assumed to occur only by molecular
diffusion, as discussed in Section 6. Mass transport at the interface occurs by the mechanism
of gas-kmetlc collisions with arbitrary accommodation coefficient o

The coupling of gas-phase and interfacial mass~-transport kinetics to the rate of aqueous-
phase reaction is entirely-general, depending only on the reaction rate averaged over the
drop, R, i.e., independent of the details of the reaction mechanism. In contrast, the aqueous-—
phase mass-transport and kinetics are mumately coupled, and a different treatment is
requu-ed for each mechanism for quantitative description of mass-transport 11m1tat10n.>
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Happily, the case of a first—order reaction (or pseudo-first-order in diffusing species) is
analytically soluble. We thus focus on the example of a first-order mechanism both for the
quantitative results afforded for this mechanism and for the qualitative insights provided

for other kinetic rate expressions.

Gas Phase.

We first consider gas-phase diffusion of a species to the surface of a drop, a problem
initially treated':‘ by Maxwell (1877). In the absence of gas-phase sources or sinks, the
differential equation for gas-phase concentration G in spherical symmetry is (e.g., Crank,
1975, p. 89)

§a 1 4 §G

=D, — = (225 =0 . (7.1)
4t € 2 oy Sy

We first consider a situation for which the concentration is initially umiform (t < 0) in
which diffusion to a perfectly absorbing sphere of radius a is initiated at t = 0. The long-
time (steady-state) solution to (7.1) is obtained by setting dG/dt = 0, which yields the
ordinary differential equation

Dg_q__(rz —) =90 (7.2)
having solution (still for G(a) = 0)
a

Gss(!‘) = Gw (1 - ;) . (7.3

The flux corresponding to this profile is

) . dGss(r) a
Fgg(r) = —DgT—= - Dg G — . (7.4)
r r

At steady state the flux of reagent into the drop is equivalent to a reaction rate averaged

over the drop as
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_ 4
Rgg = - (gmm-l (4mr2) Fgg(r), 7.5

whence, for G in mol/liter, we may equate the flux (7.4) to an average molar uptake rate

! 3 Dg G
R(g)______g.__:

max B ¢ (7.6)
al

Here the superscript (g) denotes gas—phase mass transport and the subscript max denotes
that the flux (7.4) for G(a) = 0 represehts the meximum steady-state flux into the drop that
can be achieved by gas-phase diffusion. In terms of gas-phase partial pressure

(@) _ 3 Dg pa(=)
max RT a2

. (7.7)

This maximum uptake rate is shown as a function of drop diameter in Figure 7. It is seen that
the maximum uptake rate, expressed per ppb of gas-phase reagent permits quite substantial

reaction rates in the context of concentrations of cloudwater-dissolved materials, e.g., 5 '
10-5 M s~1 or 0.18 M h~1 at 10 um diameter.

The recognition that there is a maximum rate at which materlal can be diffused into a

10-! T
— — — .GAS PHASE
INTERFACIAL

Figure 7. Maximum molar uptake rate per
ppb of gas-phase reagent as a function of
cloud drop diameter, as controlled by gas-
phase diffusion (- -~ =) or interfacial collision
rate (———) for indicated values of the
.o-ol I accommodation coefficient . Conditions: T

10 100 = 298K, D, = 0.1 cm? 51, M = 30 g mol™\.
DIAMETER, um g -
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droplet leads to identification of an important characteristic time associated with gas-
aqueous reaction, Viz., the time constant associated with saturating the drop in the reagent

gas in the absence of any aqueous-phase sink,

) _ [Aleq i} Hp RT a2 5
sat (g) 3 Dg

R
max

(For a gas such as SO9 that undergoes rapid aqueous—phase equilibrium, H in (7.8) would be
replaced by H*.) As shown by Freiberg and Schwartz (1981) this characteristic time was,
sufficiently great under the conditions of certain laboratory kinetic studies of the oxidation
of S(IV) to have appreciably decreased the S(IV) concentration and in turn the oxidation rate
from the steady-state values that had been assumed in the analysis of the kinetic data.
Identification of the characteristic time associated with saturating the drop by gas-phase
diffusion permits us to anticipate a further condition that must be satisfied in order that the
rate of reaction at steady state not be restricted by the rate of diffusive mass transport,
viz., that the time required to saturate the

— - —— AQUEOUS PHASE, T, drop be short compared to the character-
———— —— GAS PHASE,
107 mr:nncm.":." /’ E istic time of reaction of the dissolved
e material, i.e.,
rr a I .
’ < (g)
-l / - Toap << T . 1.9)

This supposition is verified shortly.
We now return to the time-dependent

equation. Based upon dimensional con-

CHARACTERISTIC TIME 7, s

siderations, we anticipate the character-

istic time for approach to the steady-state
solution to be of order (az/Dg); we arbi-
trarily define the characteristic time
aséoeiated with gas-phase diffusion as

107
1 10 100
DROP DIAMETER, um 9
a
Td.g. = — 3 (7.10)
Figure 8. Characteristic times associated 3 Dg

with diffusion in aqueous-phase ( T4, , ) and
gas-phase ( Td.g.) and with interfacial mass
transport ( T;), as a function of diameter for . o . .
a spherical’ ldroplet. Diffusion coefficients this definition differs slightly from that
are 1 x 1075 and 0.1 cm? 5”1 for aqueous introduced by Schwartz and Freiberg
and gas phase, respectively; T;, evaluated
for molecular weight 30, is shown for
indicated values of the accommodation phase diffusion (as well as those for
coefficient . :

(1981). The characteristic time for gas-

aqueous 'phase diffusion and for inter-
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facial mass transport, to be introduced
below) is shown as a function of drop
diameter in Figure 8. The solution to the
time-dependent problem has been given by
various authors (e.g., Beilke and Graven-—
horst, 1978; Seinfeld, 1980, pp. 76-79). One
convenient way to depict this solution is

FU1W/Fg

as the flux into the drop as a function of

time, Figure 9. This flux is initially quite

high but asymptotically approaches the 0 0.5 1.0 1.5

steady-state flux given by equation (7.4). 1/%y.q.

In fact, the asymptotic approach to the Figure 9. Time dependence of flux of gas

steady-state flux is quite slow; nonethe- into irreversible absorbing solution. Abscissa
. ¢ is expressed as dimensionless ratio of time to

less, as may be seen by comparison of the = 82/3D : ordinate is expressed as

characteristic times of gas and aqueous ratio of flux to infinite-time value, Feo=

DgG(w )/a.

diffusion in Figure 8, the relaxation of
the gas-phase system is still sufficiently
rapid that the gas—-phase system may be
considered to rapidly adjust to changes in conditions imposed by the aqueous phase system.

We now consider the steady-state equation (7.2) for arbitrary G(a), 0 < G(a) < G@). The

resulting concentration profile is (cf. Figure 2)
a :
G(r) = G(e) - p [G(e) - G(ad] . (7.11)

Equating the resultant flux with a rate of reactive uptake of A in the drop va R(a), we

obtain for the departure from uniform gas-phase concentration

2 -
G(®) - G(a) = ;;—oA f(a) (7.12)

g

or, in terms of partial pressure

pa(®)-pala)= 3 D va R(a) . (7.13)

g

Equation (7.13) permits us to formulate a criterion for absence of gas-phase mass-transport

limitation, viz.,
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__.-__—-————pA(Q) - Pat® < g << 1 (7.14)
teg . ‘ .

pa(=)

This criterion sets an upper bound on the aqueous-phase reaction rate

3D

V) R(a) < £g pA(")k . (7.;{5.)

a2 RT

It is readily established that the bound (7.15) is equivalent to the intuitive supposition (7.9)
for the absence of gas-phase mass-transport limitation.

The bound (7.15) may expressed in terms of solubility and rate coefficients for various
mechanisms. For first-order kinetics (eq. 5.5, ¥ = 1). We obtain the bound

3D, .
g . (1.16)

k(1) Hy < ¢
- ggT a2

This inequality is illustrated in Figure

10 for various values of drop diameter for 108

€ g arbitrarily taken as 0.1. In preparing 'o,\ |
this figure we have employed Dg = 0.1 cm? DIAMETER,

s™1, taking advantage of the relative L

insensitivity of Dg to the identity of the '°°\|o 4
diffusing gas, as illustrated in Table 2.

For the coordinates of the figure takén as '°‘\3° |
log k() and log Hyp, the inequality (7.16) o3k 1
is represented by a region in the k(1)-- o2l 1
Hp plane below and to the left of the line
representing the condition of equality. To

H or H®, M otm™!

employ Figure 10 the point (k(1), Hp) : A

103 10 0! i o7 107 io®
corresponding to a situation of interest is PO

located on the figure. For a reagent gas .
Figure 10. Gas-phase and aqueous-phase

undergoing rapid aqueous-phase equi- mass-transport limitation, The several lines
librium H* must be employed. Similarly, represent the onset (10%) of mass-transport
. limitation for the indicated values of drop

for a second-order rate coefficient (5.10) diameter. Diagonal sections represent gas-
must be employed. The point (k(l), Hp) is phase limitation; vertical sections represent
. aqueous-phase limitation. For situations such

then compared to the location of the bound that (k(7), Hy is below and to the left of a
(7.16) for various drop sizes; for the given line mass-transport limitation is less

. . than 10% for the indicated dro") diameter,
point below and to the left of the line gas- 1 p

Evalyate% for1 Dg = 0.1 cm? s a=1x
phase mass-transport limitation to the 1077 em® 577,
rate of reaction does not exceed 10%.
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Figures such as this are useful (Schwartz, 1984a) as they perniit a readily applicable means
by which it may be ascertained that a situation of interest is free of mass-transport
limitation or, conversely, that an evaluation of mass-transport limitation is required in an
examination of the overall gas-aqueous reaction kinetics.

A simila;; treatment can be given for second-order kinetics (eq. 5.8, = 2), yielding

3 D

g . (1.17)

k(2IHp2 <€g
2 RT a? py

It is seen that for other conditions held constant there may or may not be gas-phase
mass-transport limitation depending on the reagent partial pressure. Example of second-
order reactions of atmospheric interest include 2NOg {+ HoO ()] —» 2H* + NOg™ + NO3~ (Lee
and Schwartz, 1981b) and 2HOy —» HgOg(aq) + Og (Schwartz, 1984b).

Interfacial.

As discussed in Section 6, the kinetic theory of gases sets an upper limit to the flux of a
gas to an interface. We note further that the effective flux of a reactive gas across this
interface may be less than that given by the gas- kinetic collision rate, i.e., the
accommodation coefficient for this mass transport may be less than unity. We examine here
the limitation imposed by this finite rate of mass transport on the rate of uptake and
reaction of gases in cloud droplets.

Following equation (6.5) we denote the effective flux of reagent species A from the gas-
phase into the aqueous-phase of a droplet of radius a as

6* = pa(a) ¥ «/4 RT . (7.18)

Here the subseript + explicitly denotes that this flux represents the gross (or one-way) flux
into the drop. Also we explicitly employ ‘pA(a), the partial pressure at the interface, which
may not be approximately equal to the bulk partial pressure because of the gas-phase
concentration gradient.

The flux (7.18) sets an upper limit to the rate of uptake of a gas by a droplet of radius a,
exactly analogously to the maximum diffusive flux, equation (7.4), yielding for the maximum

molar uptake rate

3 pa(a) Vux

(D -

(7.19)
v max - 4 BT ‘a .
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This maximum uptake rate is shown as a function of drop diameter in Figure 7 for various
values of the accommodation coefficient & . Comparison of R,(nlgx with R,(nga)x, the maximum
uptake rate permitted by gas-phase diffusion, allows identification of which of these two
mass-transport processes is more restrictive and therefore controlling. It is seen that for
o > 0.1 gas-phase diffusion is more restrictive over the drop-size range of interest,
whereas for « < 1073 interfacial mass transport is more restrictive. ¥
The recognition that there is a maximﬁm rate of interfacial mass transport into a drop
leads to identification of a characteristic time associated with saturating the drop in the
reagent gas as controlled by interfacial mass transport (cf., Téii, eq. 7.8) in the absence of

any aqueous—phase sink,

(i [Aleq 4 HpA RT a
o (1) _ = -, (7.20)
sat (i) 3 va
ax v

Depending on whether (igx or R&ga)x is controlling, the time to saturate the drop in the
reagent gas will be controlled by 7 gz)t or T §§%, respectively.

Analogous to the argument above for gas-phase mass transport, identification of the
characteristic time associated with saturating the drop by interfacial mass transport permits
us to anticipate the condition that must be satisfied in order that the rate of reaction at
steady state not be restricted by the rate of interfacial mass transport, viz., that the time
required to saturate the drop be short compared to the characteristic time of reaction of the

dissolved material, i.e.,

(1) (o 7
T sat < r (7.21)
This supposition is verified shortly.
We now wish to address the net flux across the interface, which will differ appreciably
from the gross flux when the aqueous-phase concentration is appreciable. We observe that we
may express the gross flux (7.18) equally well in terms of [A]*, the aqueous-phase

concentration of A in equilibrium with pa(a) as

6, = [A]* v a/4 Ha RT . (7.22)
The actual gross flux of material leaving the aqueous phase into the gas phase is given by
the same expression but employing the actual aqueocus-phase concentration at the surface
instead of the equilibrium concentration,

G_ = [Al, ¥ &/4 Hp RT . (7.23)

This is so because, by microseopic téversibility',6+ must equal 6_ at equilibrium and



because the flux is linear in concentration. The net flux of material transfer into solution is

6=6, _G_=___‘?__‘f._.
4 RT

~

3

(Hp paCa) - [Alg . (7.24)

This net flux may be equated to the rate of reactive uptake of A in the drop A R(a) to

optain the departure from Henry's law equilibrium at the surface that results from this

uptake rate:

4a Hy RT

Hapa(a) - [Alg =

va R(a) . (7.25)

The difference between Haopa and (A), is represented by the step in concentration profile at

the interface indicated in Figure 2.

Equation (7.25) permits us to define a criterion for the absence of interfacial mass-

Hoor H*, M otm’!

Figure 11. Interfacial mass-transport limitati~

on. The several bands represent the onset
(10%) of mass-transport limitation for the
indicated values of accommodation coeffi-
cienta : the width of each band corresponds
to the drop diameter range 3 to 100 um.
Mass-transpor1t limitation is less than 10% if
the point (k( ), H) is below and to the left
of the bound representing “the applicable
values of & and drop diameter. Evaluated for
gas molecular weight = 30 g mol™ ',

transport limitation, viz.,

Ha paCa) - [Al,

< £; << 1 (7.26
Hp pa(a) <Ei )

This criterion also sets an upper bound on
the aqueous-phase reaction rate, in this
case

- 3 v
Vo R(a) £€i mTpA(a). (7.27)

It is readily established that the bound
(7.27) is equivalent to the intuitive sup-
position (7.21) for the absence of inter-
facial mass-transport limitation.

The bound (7.275 may be expressed in
terms of solubility and rate coefficients
for various mechanisms just as was done

" in the examination of gas-phase mass-

transport ~limitation. For first-order
kineties (eg. 5.5, V¥ = 1) we obtain the
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bound

39«
k(1) Hy < £ —— (7.28)
- 4 a BT

This inequality is illustrated in Figure 11, for £; taken as 0.1. Here a range of bounds must
be indicated reflecting both the pertinent range of drop size and the uncertainty in
knowledge of &. It is seen by comparison to Figure 10 that interfacial mass-transport may be
more or less controlling than gas-phase, depending largely upon the value of . A similar
treatment can be given for second-order kinetics yielding

3 7 «
k(2)Hp2 < & 3 s Rr on ‘ (7.29)
a RT pa

also exhibiting an inverse dependence on the partial pressure of the reacting gas. Such a
situation has been treated by Schwartz (1984b).

Gas-Phase plus Interfacial.

We have observed that the description of both gas-phase and interfacial mass-transport is
independent of the details of the aqueous-~phase reaction mechanism. This observation
suggests the utility of developing a single expression that combines both processes.
Moreover, for the purpose of developing a formalism for treating mixed-phase kinetics at
steady state, we shall find it useful to express the rate of these mass-transport processes by
a single phenomenological "rate coefficient." We develop the expression for the mass-
transport rate coefficient by analogy to the following model of a two-step reaction

mechanism
X (11
"‘_q"'— Y
Rg‘
Y —— 2 (2]

Reaction [1] is reversible with forward and reverse rate coefficient k; and k-1; we note that
the equilibrium constant for reaction [1] is Ki = kj/k-1. Reaction (2) is irreversible,
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proceeding at steady state with rate Rg. The usual steady-state treatment for the
concentration [Y] yields

[y}

K1

(7.30)

Rg
ky

We observe that an equation formally identical with (7.30) is obtained by combining equations
(7.13) and (7.25) for gas—phase and interfacial mass transport, respectively, viz.,

[ACaq) ],y a2 4a
= pA(”) - RT ( +

) V5 R(a) . (7.31)
Hy ~ 3Dy 30 A

We may thus make the following identification between elements of the reaction mechanism [1]
- [2] and the mass-transport system:
X Al r=ew

Y : A(aq) r=a

[1] : A(g) : A(aq)rza

dl[A(aq)]a
R = k (”)
1 dt 1 PA
d.j{ACaq)]g
R- = k-1[ACaq)]
1 at 1 q)la
Ry : Va R(a)
1 a2 43
k1 : — ( + y-1
Ky Hp
1 a2 4a
Koy ¢ o —— ( + y-1
HRT 3 Dg 3 Va
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This identification is of considerable utility and exhibits as well a number of interesting
features that we briefly discuss here. Before that, however, we introduce for convenience an

additional definition, viz.,

a2 4a
kmt = ( + )-1 H (7.32)
3Dg 3 V&«

kmt represents the rate coefficient for gas-phase plus interfacial mass transport. With this
definition equation (7.31) becomes

[ACaqQ)], Vs R(a)
— T a pple - T, (7.33)
Hp BT "1 xpe

A first observation concerns units, although to be sure the units of the several quantities
are somewhat arbitrary, reflecting convention and definition. We note that we have chosen to
express rates in aqueous-phase units, i.e., M(aq) s~1. Thus for the phenomenological mass-

transport reaction
[1] A(g)r=o: A(aQ)rza

the rate Ry represents moles of reagent A entering the drop per liter of drop volume per
second. Since, in keeping with the standard state convention we have adopted for gases, we
wish to express the reagent gas activity as a partial pressure in units of atmospheres, the
"rate coefficient" kj; must have units M atm™! s-l. This falls out naturally in the
identification

1 (a2 4a
~ RT 3Dg 3 Va

~

k1 -1, (7.34)

In defining  kpyt according to (7.32) the choice was made to reflect the kinetics by Xkt
(units: s71) and to effect the conversion of the concentration units by the factor (RT)71
(units: M atm~1). It may be observed that '

+ , (7.35)

where the first term on the RHS is the characteristic time: associated with gas-phase
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diffusion, Tq.g,.. equation (7.10). We thus identify the second term as a characteristic time
associated with interfacial mass, transport, '

T. = . (7.36)

We therefore define a characteristic time associated with gaseous plus interfacial mass

transport,
Tmt = kmt™! = Ta.g. + 7 (7.37)

i.e., the sum of the characteristic times of the two processes. Equations (7.35) and (7.37)
reflect the usual combinatorial algebra associated with sequential mass-transport processes,
i.e., of rate quantities "adding" like electrical conductances in series, or time quantities
adding like resistances in series.

The dependence of the mass-transfer rate coefficient kyt on accommodation coefficient
and drop size is indicated in Figure 12. It is seen that for high values of i, kmt approaches a
constant value that represents diffusion-controlled uptake, whereas at small < kypt decreases
linearly with decreasing a, indicative of collision-controlled uptake. The a dependence at
high & is quadratic, whereas at low o it is linear. We return to further consideration of kpyt
in Section 8.

An important point to emphasize about
the treatment that has been given thus far
is that it is completely general with

respect to the mechanism of the aqueous-
phase reaction and with regard to whether
or not the concentration profile of the
reagent in the drop is spatially uniform.
All that is assumed is that the agqueous-—
phase reaction is at steady state, pro-
ceeding with a spatially averaged rate R .
We would note, however, that in many
cases of interest the agueous-phase con-

centration profile is uniform, for which

situation additional simplification obtains. 10! L ! 1 L -
| o-! 1072 102 107 1073 1078

ACCOMMODATION COEFFICIENT, a

Considerable simplification obtains as well

in the case of a first-order aqueous-phase

) Figure 12. Dependence of the mass-transfer
rate “coefficient on accommodation coeffi~
concentration profile is uniform). For cient and drop diameter. Note sense of log
scale fora. )

reaction (whether or not the acjixeous

reaction [2] first-order in [Y], i.e.,
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Ry = kolY], we obtain from (7.30) the customary steady-state concentration

k1 [X]

= — T, (7.38)
k-1 + kg

[yl

We make the further identification with the mass-transport system for first-order reaction
with \7A = 1’

kg : ke(l)
Ry : ke{1)[ACaqQ)lp=q ;

here ke(l) is an effective first-order rate coefficient, which would be less than the intrinsic

k(1) in the case of a non-uniform aqueous-phase concentration profile. We thus cbtain

[A(aq)]r=a‘= ! (7.39)
(Ha R 7! kg + ko)

and in turn for the overall rate of reaction

ke(1) (BT)-1 kpt pa(=)
R = . (7.40)
(HA RT)"1 kpy + ke(1)

Equations (7.39) and (7.40) have two interesting limits. For (Hp RT)™! kyt »> ke(i), [ACaq)]
~ HA pA@®), and R = ke{l) Hp pa(®), i.e., the phase-mixed limit, in which the aqueous—phase
(at least at the interface, for non-uniform aqueous-phase profile) is in equilibrium with the
reagent gas at the bulk partial pressure. At the other extreme, (Hp BT)'1 kmt << ke(l), R
s kpt PA/RT, i.e., the reactive uptake is controlled completely by mass transport.

Some further comments are in order regarding equation (7.31) and in particular the term
for mass-transport. We note that quite a few expressions of form similar to (7.32) have been
advanced by various authors to describe mass-transport in the "Knudsen" regime, i.e., the
regime intermediate between the continuum regime treated here and the free-molecular
regime, in which the radius of the particle is much smaller than the gas mean free path
(Wagner, 1982; Davis, 1983; Dahneke, 1983, and references therein). Of these expressions that
due to Fuchs and Sutugin (1971), which was based on a numerical solution to a neutron
scattering problem, is perhaps the most widely employed in consideration of mass-transport
of minor solute species (e.g., Chameides and Davis, 1982). However, as emphasized by Davis
(1983) all such expressions for mass-transport kinetit_:'s.“ resulting from various simplified
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treatments are of necessity éomewhét artificial because of inherent approximations.
Undoubtedly the expression (7 .32) would be subject to the same sort of criticism. However in
support of the present treatment and the resulting expression for kyt we would offer the
following arguments:

1. Simplicity, Only continuum diffusion theory and the gas kinetic surface
collision rate have been employed. No ad hoc assumptions have been made.

2. Comprehensiveness. The present model incorporates both reversible disso-
lution (according to Henry's law) and variable mess~accommodation coef-

ficient.

3. Generality. The model is independent of the mechanism of aqueous-phase
reaction and of any assumption regarding the aqueous-phase concentration
profile.

4, Accuracy in the limits. The expression for the uptake rate approaches in the

appropriate limit the correct value for the uptake rate in the continuum
regime, in the free-molecular regime, and in the regime corresponding to
Henry's law equilibrium between the concentration at surface of the drop
and the bulk partial pressure.

To the above list one might also add the observation that comparison with the formula of
Fuchs and Sutugin (1971) shows quite a close agreement over the entire range of mutual
applicability, the maximum dephrture between the two expressions being 15%. These arguments
certainly lend support to the present approach to evaluation of mass-transport kinetics for
uptake and reaction of gases in aqueous droplets, and in particular to the mass-transport

rate coefficient defined by equation (7.32).

Aqueous-Phase Diffusion and Reaction.

We now consider the problem of diffusion of a dissolved reagent from the surface of a
drop toward the interior coupled with aqueous-phase reaction in the drop. We focus
principally upon the steady-state treatment of this problem but briefly consider the time-
dependent problem for-the insights afforded. The objective of the analys1s is to evaluate
Rss(a), the steady-state rate of reaction averaged over the volume of the drop, for the as-
sumed chemical-kinetic rate law, as.a function of the steady—state reagent concentratlon at
the surface of the drop, [Aly (or Agg(a); Flgure 2). This average rate may be compared with
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the rate evaluated under the assumption of a uniform reagent profile in the drop (at
concentration [Alg); the quotient of these two rates is a measure of the limitation imposed on
the rate of reaction by the finite rate of aqueous-phase diffusion. We note further that eva-
luation of R gg(a) as a function of [Alp=y permits evaluation of [Alp=g by (7.31) in terms of
of the bulk partial pressure pp(®), thereby solving the entire problem of mass-trangport
(gas, aqueous, interfacial) coupled with aqueous-phase chemical reaction. The quotient of
the average rate Rgg(a) to the rate evaluated for a uniform aqueous-phase concentration in
Henry's law equilibrium with the bulk gas-phase concentration (A, in Figure 2) is a
measure of the overall mass-transport limitation.

We address the problem of coupled mass-transport and reaction by means of the partial
differential equation in the time- and space-dependent aqueous-phase concentration A(r,t),
analogous to (7.1) but inclusive of a term representing a reactive sink,

dA

d
a—l——‘{(r2 —A) + R(r,t) =0 . (7.41)
gt r2 dr dr

Initially the concentration A is uniformly 0. At the time t = 0 the drop is exposed to a gas-
phase concentration that establishes and maintains a constant surface concentration A(a).
(We thereby assume that transients due to gas-phase and interfacial mass transport relax
rapidly.) In the absence of the chemical sink term the concentration approaches a constant
value equal to the surface concentration, with a time constant characteristic of aqueous-

phase diffusion

a2

= (7.42)

Td.a.
a

(Crank, 1975, p. 92). For the reactive problem, at long time the system achieves a steady-
state that is inherently characterized by a non-uniform concentration profile as the reagent
is consumed by reaction in the interior of the drop. Introduction of the characteristic time
associated with aqueous-phase diffusion allows us to anticipate the condition that must be
satisfied in order that reaction not greatly deplete the aqueous-phase concentration from its

surface value, viz.,
Td.a. << Tr : (7.43)

We return now to the reactive problem. At steady state JA/Jt = 0 and the concentration
profile is governed by the ordinary differential equation
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1.d  dAgg(r)
Dy — — (r2 ————) = Rgg(r) v (7.44)
r2 dr dt

Equations (7.41) and (7.44) are not in general analytically soluble. However in the case of a

first-order rate law
R(r,t) = k(1) A(r,t) (7.45)

an analytical solution exists for both the time-independent and time-dependent problems. We
therefore examine this system in some detail, not only to obtain a quantitative measure of the
effect of mass-transport limitation but also for qualitative insight into other rate laws
whose kinetics can be expressed in terms of an effective first order rate coefficient, as
introduced in Section 5.

We first consider the steady-state solution to (7.44) with rate law (7.45), and return
presently to the time-dependent solution. This solution is given (Schwartz and Freiberg,
1981) as

a sinh (qr/a)
Agg(r)=A(a) — ——— (7.45)
r sinh q

where we introduce the dimensionless diffuso-reactive parameter
q = a(k(1)/pyH1/2 | (7.46)

As we shall see, knowledge of the value of q characterizing a given physical system is
fundamental to the understanding and description of the system.

In order to enable appreciation of the role of the parameter q upon the steady state
concentration profiles within the drop, we show these profiles in Figure 13 for several
values of q. It is seen that at low value of g, the steady state-reaction profile is nearly
uniform. This reflects the rapidity of diffusion relative to reaction. However, for values of
q of the order of unity and greater there is an appreciable depletion of Agg towards the
center of the drop, reflecting the inability of diffusion to restore the decrease in Agg caused
by chemical reaction. In other words, with increasing q there is decreasing penetration by
Agg from the surface of the drop into the interior. This effect is displayed also in Figure 14,
in which the concentration at the center of the drop, ‘ :

q
A = A —_— 7.47
: ss(o) - (a) Sl | q_‘ ( )
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Figure 13, Steady-state radial concentration Figure 14, Average concentration of reactant
profiles of concentration of a reactant species A and the concentration at the
species A(r), relative to the concentration at center of the drop A(0), relative to the
the surface of the drop Ae, for a drop of concentration at the surface of the drop Ae,
radius a, for indicated value)s of thei dimen- at steady state, as a function of q. From
sionless parameter q = a(k /Dy ) In the Schwartz and Freiberg (1981).

notation of the present paper A. A(a).
From Schwartz and Freiberg (1981).

is given as a function of g.
More important than the dependence on q of the concentration at the center of the drop

is the dependence on q of the average concentration Agg, since the rate of reaction avera-
ged over the drop, R = kA, will at steady state be proportional to this average. Agg is

evaluated as

a
Agg = (4amad3/3)-1 [ awr2 Agg(ridr . (7.48)
0

Integration of Agg(r) given in Eq. (7.45) yields the result

- th 1
Agg/ACa) =3 (=23 -2 . (7.49)
q q? ‘

This steady-state average concentration is also shown in Figure 14 as a function of the
parameter q. For q 2 1 the steady-state average concentration Kss is seen to be significantly
less than the equlhbnum concentration A(a). The fall- off of Agg with increasing q is
slower than that of the concentratlon at the center, ASS(O). This slower fall-off reflects the
large fraction of the volume of the drop that is "near" the surface. The dependence- of Agg
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and in turn Rss(a) on k(1) and a, and the implications on the interpretation of laboratory
kinetic data are discussed by Schwartz and Freiberg (1981) and Freiberg and Schwartz (1981).
One partlcular feature to point out in the present context, however, is that the uptake
pemains first order in A(a). Hence it is useful to define an effective first-order rate
_coefficient, a function of drop radius g, that takes into account the non-uniform spatial-

average concentration of Agg in the drop, viz.,

th 1
ke(1)(a) = 3k(1) ?o—_—-—g— - —) . (7.50)
q q?

This effective first-order rate coefficient, which was suggested in the discussion above, is
useful in consideration of reaction rates for distribution of drop sizes, as discussed in
Section 8.

An important result that may be obtained from equation (7.49) is the value of q for which
Agg/A(a) commences to depart appreciably from unity. We observe that for low q (7.49) may

be approximated as

Ass q2 2q4
M1 - —+— ... , g5 l5 . (7.51)
A(a) 15 315 )

Equation 7.51 permits a bound to be set on g, and in turn on k and that the fractional
departure of the average concentration from that at the surface not exceed a specified value,

viz., for

1 - Agg/A(a) < €4 << 1,

D
k(1) < 15 &, —;- , €4 < 0.1 . (7.52)

a

It is readily established that this bound is equivalent to the intuitive supposition (7.43) for
the absence of aqueous-phase mass-transport limitation. The bound (7.52) is illustrated in
Figure 10 for various values of drop diameter, for £, arbitrarily taken as 0.1. For values of
k(1) iess than the bourd indicated for the drop diameter aqueousfphase mass-transport
limitation is minimized. The combined bounds represented by gas- and aqueous-phase mass-
transport considerations-- restrict the values of (k(1), Hp) for situations free of mass-
transport. Additionally, mterfacml mass-transport. limitation would also have to be
addressed, Flgure 11.

We' note that the vélue of the Henry s law coefficient at the "knee" of the bound
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representing the onset of gas- and aqueous—phase mass-transport limitation is independent
of drop radius, a. This value of H is given by

1
5 RT
~

Hknee =

UIU
)

for g = fg‘. For Dg = 104 Dy, Hypee % 80 M atm™l. For values of H < Hypaee, aquecus-phase
mass transport is more controlling than gas-phase, and for H > Hgnees ga8s-phase mass
transport is more controlling. Examples of the application of these relationships to
measurement - of . mass-transport limitation for situations of interest in the ambient
atmosphere have been given by Schwartz (1984a).
We now return briefly to the time-dependent problem, which has been treated in detail by
_Schwartz and Freiberg (1981) as well as other authors cited therein. An example of this time
dependence is shown '
in Figure 15, which shows the concentration A(r,t) for the value q = 1.5, representative of a
slight (~15%) steady~-state mass-transport limitation. The several curves indicate the
penetration of A into the interior of the drop and the eventual establishment of the steady-
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Figure 15. Values of the time- and space- Figure 16. Time dependence of the relative
dependent reagent concentration A(r,t) as difference between the flux into the drop at
a unction of r for indicated values of time t and the steady-state flux into the
k(D¢, and for %Ige diffuso - reactive drop, for indicated values of q. Dark curve
parameter q—a(k /D )1/2 = 1.5. With in- at right of figure represents the envelope of
creasing time the radlal concentration functi= the several curves and constitutes an upper
on approaches the non-uniform steady-state bound on the relative difference for all
profile; contrast Fig. 6.1 of Crank (1975) values of q. From Schwartz and Freiberg
displaying profiles. for diffusion in the (1981).

absence of reaction, i.e., q = 0 in the
present notation. From Schwartz and Freiberg
(1981).
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state relationship. Perhaps more important is the present context in Figure 16, which shows
the approach of the flux into the drop fo the steady-state flux as a function of time for
various values of q. This approach is seen to be rapid (relative to T = k(-1 for an
values of g, supporting the steady-state approach. .

Aqueous-Phase Source.

For a reaction forming a product species C that diffuses within the aqueous phase and
evolves into the gas phase the opposite situation obtains from that thus far treated, i.e., the
normalized concentration profile on a plot such as Figure 2 decreases with increasing r. We
briefly consider this problem ‘to assess the magnitude of steady-state concentrations build-
up as a function of reaction rate. As before gas-phase and interfacial results are
independent of the details of R, but the aqueous-phase result depends on the radial
distribution of R(r). For this discussion we take R to be constant.
Solution of the appropriate differential equations yields the following results:

A [cl - Icl L2y
queous : r=a = 15 Da

4 Hc RT a
Interfacial: - [Clp=gq - Hcpc(8) = —————

3 Vo

RT a2
Gas phase: pc(a) - pg(e) =%

3 Dg

1 [C] - Hopo(e) Iy AL LI

Tot : - 3 = [e— —
ota cpe 15D, °~ '3va 3Dg

w2
[+ Td.a. * Hc BT (T; + Zq.g )1 R

These expressions permit evaluation of the magnitude of product build-up as a function of
formation rate and pertinent mass-transport properties. Expression of each of the 4C terms
as a product of rate x characteristic time is particularly heuristic and therefore useful for
acquiring insight into the system. '
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Summary.

In this section we have outlined a procedure for evaluation of mass-transport limitation
to the reactive uptake of gases by aqueous droplets, treating gas-phase, interfacial,jand
aqueous-phase mass transport. The treatment was both heuristic, in terms of characteristic
times (as summarized in Table 4), and quantitative, in terms of steady-state solutions to the
pertinent differential equations. The treatment of gas-phase and interstitial mass-transport
was general with respect to the aqueous-phase rate law, whereas the treatment of coupled
aqueous-phase mass transport and reaction was restricted to a first-order rate law.
Expressions were presented for the magnitude of departure from uniform concentration
profile attributable to the several mass-transport processes; these are summarized in Table
5. Bounds representing the onset of mass-transport limitation were presented, as summarized
also in Table 5. Finally the concentration profiles associated with aqueous-phase formation

of product species were examined.

Table 4

Characteristic Times Pertinent to Reactions of Gases in Aqueous Droplets

" Characteristic
Process Time Definition Equivalence
Reaction ' Ty [A]l/vy R
Aqueous-phase Td.a. a2/1r2Da
Diffusion
Gas-phase Td.g. a2/3Dg‘
Diffusion
(g) a?
Saturation by Gas- Tgat HRT HRT Td.g.
phase Diffusion 3 Dg
' Interfacial Mass Ty 4a
Transport 3 %a
Saturation by Inter- téi% HRT 4a HRT T4
facial Mass Transport 3 v
Gas-phase + Interfacial Tmt Td.g. * T4

Mass Transport
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Table 5

Departure frdm Uniform Concentrations in Reactions of
GCases in Aqueous Droplets

Magnitude of Uniformity Condition
Phase Departure Heuristic Quantitative
2

RT 3D

Gas p(=) - pla) = ——2 W e m(D e —E
3 D, RT a
Interfacial Hy - [Alrmg = 22 grr W rgi,): < T, He(l) < ¢ 3 3¢
3 % —  4a RT
Aqueous [A1/IA) ymg = 3 LEEEE.S - l_) tq.a. & Tr k(1) <15 ¢ 2%
q q a

Aqueous phase departure and quantitative uniformity criteria are expressed
for first-order rate law., Diffuso-reactive parameter q = a(k(l /Dy vz |

€ < 0.1 represents maximum allowable fractional departure from uniformity
condition.

8. GAS-AQUEOUS KINETICS IN CLOUDS

In this section we develop an approach to the description of reaction kinetics of gases in
cloud droplets and the coupling of aqueous— and gas-phase kinetics. Such an approach in
principle permits treatment of reactions in the two phases by means of a set of coupled
ordinary differential equations.

Phase-mixed Limit.

Provided it can be established, by the methods outlined in Section 7, that the gas-aqueous
reaction under examination is phase-mixed, then evaluation of aqueous-phase rates may
proceed by the method outlined in Section §, i.e, evaluation of aqueous-phase rates in terms
of gas-phase partial pressuz;es by Henry's law. This approach has been employed in our
previous evaluations of the rates of aqueous-phase in-cloud reactions of nitrogen and
sulfur’oxides (Lee and Schwartz, 1981b; Schwartz, 1984a).
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Monodisperse: Cloud.

For non-phase mixed systems explicit consideration must be given to mass-transport
kineties. This treatment is heuristic for a monodisperse cloud, so we begin with this mogel.
Consider a monodisperse cloud, characterized by drop radius a and liquid-water volume

fraction L. Consider a reaction mechanism

Q — Alg) (Ql
A(g) —— gaseous products . - [S]
Al == A(aq) [11
A(aq) —— products (2]

Here [Q] and [S] represent gas-phase source and sink reactions of the reagent of concern
A(g), having rates of q and s, respectively (atm s~1), The following rate expression obtains
for [Aly the aqueous-phase concentration of A, at the surface of the drop,

prrai (R "1 kpipa - (HART) "1 kptlAla - Rz, _ (8.1)

where we have used equation (7.34) for ki. Rg represents the rate of reaction [2] averaged
over the volume of the drop. The corresponding rate expression for pa is

d pa L
_—= - s - L Kk + — kmtlAlg , (8.2)
dat q mt PA Hy mt a

where we have used equation (5.3). Equations (8.1) and (8.2) form the basis for coupling of
gas- and aqueous-phase chemical kinetics by the kinetics of inter-phase mass transport.
Before proceeding further it is useful to comment on the magnitude of the gas-aqueous
exchange rate as represented by the term L kyt pA in equation (8.2). We have noted that the
cloud liquid-water Qolume fraction L is of order 1076, and we observe from Figure 12 that
Kmt is of order 10~3 s~1 (x %1075 to 106 571 (2> 1072). Thus the one-way fractional
removal rate of a gas into the aqueous phase is of order 103 to 1 s~l. This order-of-
magnitude argument establishes potentially very high removal rates of reacﬁvg gases by
aqueous—-phase reactions in clouds. In this context ‘we:‘ wouid ‘note that Levine and‘St;hwértz
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(1982) have calculated aqueous—phase uptake rates of HNO3 for representative cloud drop
size spectra of 0.2 to 1 51, under assumption of unit accommodation coefficient and
irreversible dissolution. Such potentially high removal rates also suggest that aqueous-
phase reactions would be competitive with gas-phase processes, including photolysis,
provided aqueous-phase reactions are sufficiently fast. A possible example might be
aqueous-phase reaction of NpOs competing with photolysis of NO3, and has recently been
suggested by Heikes and Thompson (1983).

Polydisperse Cloud.

We now explicitly recognize that kypt is a function of drop radius a and as a consequence
[A)la and Ry are functions of a ss well. Thus for each drop radius cut equation 8.1

becomes
d[A]a(a) =
— C (RT) ™! kpt(a) pa - (Ha RT)~1 kpt(adlAlg(a) - Rea) . (8.3)

In turn for the contribution to the mass-transport kinetics of A(g) due to cloud drops of size

2 we obtain

dmt pa

1
= - pA kmt(a) dL(a) + — kmt(a) [Ala(a) SL(a) , (8.4)
dt Ha

where d L(a) is the partial liquid-water volume fraction in the size cut corresponding to a,
4 dN
dL = (=7 a3d) (—) {a,
3 da

see Figures 3 and 4. The total mass transport rate expression is obtained by integration over
the partial volume spectrum of the cloud,

.dmtPA
dt

1
= - pa [ knt(a) dL + H; f kmt(a) [Alq dL , (8.5)
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Equations 8.3 and 8.5 provide the basis for ay set iof coupled differential equaﬁohs in the gas-
phase and aqueous species. In practice, application of these equations to evaluation of rates
for real or model systems will require either use of a model drop-size distribution of
summation over size cuts as indicated in Section 3.

For aqueous-phase reaction by first-order reaction it is useful to treat the aqueops-
phase concentration by the steady-state approximation. We note that for a first-order
reaction Rg(a) = ke(l)(a) (A)g, where ke(l) is the effective first-order rate coefficient
defined relative to the surface concentration (eq. 7.50).

d[A]a(a)
Setting —at = 0 in equation (8.3) we obtain

kmt(a)

[Ala(a) = (RT)-1 pa . o (8.6)
: (HART) "1 kpt(a) + ko ()
and in turn
(1)
k (a) kpt(a)d
Ry(a) = (RD)"L pa e s . (8.7)

(HART) "1 kpt(a) + kél)(a)

Equation (8.7) embodies the dependence of the rate of aqueous-phase reaction on the size of
the drop and provides a basis for anticipating that gas-aqueous reactions will proceed at a
faster rate in smaller drops, expressed on a molar basis. In turn one would anticipate that
the concentrations of non-volatile product species will increase in smaller drops at faster
rates than in larger drops, and that this higher concentration might be measurable by means
of a fractionating cloudwater collector. On the other hand, the increased solute
concentration of the smaller drops might lead to an enhanced accretion rate of water vapor,
at the expense of the supersaturation or even of the larger drops. This process would resuit
in a leveling of the solute concentration distribution and & narrowing of the drop-size

distribution.

8. SUMMARY

A formalism exists. that permits descriptibn of the kinetics of mass-transport processes in
the uptake o_t" gases By aqueous groplets ami gqueodséphase cheinical reaction for droplets in
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the size range pertinent to liquid-water clouds. These mass-transport processes are gas-
phase diffusion, gas-kinetic collision at the interface, and aqueous-phase diffusion'coupled
with chemical reaction. Criteria are presented whereby it may be readily discerned, as a
function of drop size, reaction rate coefficient, and mass-accommodation coefficient whether
a system under examination may be treated as phase mixed or whether more detailed treatment
of mass-transport limitation is required, and expressions are presented by which mass-
transport limitation can be evaluated.

One finding that emerges frbm the treatment of mass-transport kinetics is the dominance
of interfacial mass-transport limitations for values of the mass-accommodation coefficient
less than 10~2. Unfortunately, little information is available pertinent to this quantity for
solute gases with liquid water. The potential importance of interfacial mass-transport
limitation to the rate of gas-aqueous reactions in clouds indicates the need for laboratory
studies directed to determination of this quantity.
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PRINCIPAL NOMENCLATURE

A,[A]

vX

X

Drop radius, cm.

Aqueous-phase concentration of species A, M.

Diffusion coefficient, em? 571,
Flux, mol em 2 g71,

Gravitational constant, em? 571,

Gas-phase concentration, M.

’ Henry's law coefficient of species X, M atm™1.

Reaction rate coefficient for ml' order reaction, M@ -1,

Reaction rate coefficient of reaction [n].

Rate coefficient for gas-phase plus interfacial mass transport, s

Liquid water volume fraction (of cloud).

Drop number density (of cloud), em™3.

Partial pressure of species X, atm.
Diffuso-reactive parameter, a(k(l)/Da)ll 2

Radius variable, cm.

Rate of reaction [nl, M s 1.

Universal gas constant, atm™! M1 x7L except where indicated.

Absolute temperature, K.

Mean molecular speed, cm s7L,

Mass accommodation coefficient.

Maximum allowable departure from uniformity condition.

Dynamic viscosity, g em™! s71,

Stoichiometric coefficient of species X in reaction.

Fractional rate of reaction of gaseous species X, gL,

Interfacial collision flux, mol em~2 g1,

Characteristic time, s (see Table 4).

1
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