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OUR COLLECTIVE ENERGY USE

Equivalent to 100 watts

Standard diet US adult: 2000 Calories (k cal) per day

Equivalent to 100 people!

Per capita energy US use: 10,000 watts

And all these “people” are exhaling CO  !2

100 100-watt light bulbs, 24 – 7



THE KEELING CURVE
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Atmospheric CO  has increased substantially over this period.2
Annual cycle of monthly means is due to drawdown and release
   from the terrestrial biosphere.
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Nature’s “subsidy” of our carbon dioxide emissions

AND ANTHROPOGENIC ATMOSPHERIC STOCK
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Motivation for this study
(How did I get interested in this question?)

Long interest in aerosol radiative
influences on climate change

Questions of what would (or will) happen
as combustion of fossil fuels is decreased



The “Cold Turkey”
Experiment

Abrupt cessation 
Of emissions

2018



Sources of anthro aerosols → 0
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Calculated and redrawn from recent publications
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modified from ses, jgr, 18

Current estimates vary by an order of magnitude!
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Calculated and redrawn from recent publications
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ses - in revision

Lifetime (60 – 100 yr) is much shorter than in prior studies.



Lifetime

How is it defined?
How is it determined?



The amount of time it [would take] until the CO2   
concentration in the air recovers substantially toward 
its original concentration [in the absence of emissions]



DEFINITIONS

Turnover time: Ratio of Stock to Flux out:

Requires a budget. Need to specify which stock, which fluxes.

Adjustment time: Inverse of fractional removal rate in the 

i
adj =

Si
dSi
dt

, Qant = 0

Requires a numerical model

Lifetime: Time required, in absence of anthropogenic 
emissions, until the CO2 concentration in the air recovers
substantially toward its original concentration.
Qualitative

absence of sources:

i
to =

Si

j Fij
=

Si
Q Si

Delta
Method



Global CO  budget2

Observationally based

And Turnover time
Of Anthropogenic CO2



CO2 STOCKS, FLUXES  2

 AR4 (2007), Fig. 7.3
after Sarmiento & Gruber, Phys. Today (2002)

Preindustrial
Anthropogenic

perturbation



Department of Energy’s Spruce and Peatland Responses
Under Changing Environments (SPRUCE) experiment

Examine vulnerability of wetland ecosystems to important climate change variables. 
$50 million experiment, funded by the Department of Energy, projected to run for 10 years. 
10 (40 ft diameter, 30 ft tall) open-topped, controlled-environment enclosures. 
Atmosphere and soil (peat) in the enclosures maintained at (0, +4, +8, +12, and +16 ˚F) relative to ambient.
Carbon dioxide approximately doubled in half of the chambers. 

Marcell Experimental Forest, Northern Minnesota



CO2 STOCKS, FLUXES, AND ANNUAL GROWTH2

ses, in revision
modified (considerably) from AR4 (2007), Fig. 7.3

after Sarmiento & Gruber, Phys. Today (2002)

Preindustrial
Anthropogenic

perturbation
9.9 ± 0.5

1.4 ± 0.7

3700 – 420

Surface sediment
150

119.4 120

Gross
respiration

Gross primary
productivity

70.670

Stock, Pg
Flux, Pg yr -1

Mixed-layer ocean

1.8 ± 0.6
900.0 + 32.2

+0.55100 m

3583 m

32.0 29.8

2020 + 73

Deep ocean
35,915 + 124

44.4
50

5.6 ± 1.855.1
49.5

Concentration, µmol kg-1

2250 + 9

0.2

+1.6

0.6
Ftm

Sd

FmaFam

Fmd
Fdm Fpc

Sm

QluFta Fat

Qff
Fat Fam Fma

Fmd Fdm

Marine biota
3

3700 – 422
Fossil fuels & cement

+2.1 ± 0.6

Total ocean
36,815 + 156

+5.2 ± 0.4589.4 + 269.2
AtmosphereSa

2800 – 228 + 224

Terrestrial vegetation,
soil, and detritusSt

Surface sediment
150

± 0.6

± 0.06

-0.01 ± 0.44

Land use
 change

Fta

4.0 ± 1.1



CO2 STOCKS, FLUXES2

ses, in revision
modified (considerably) from AR4 (2007), Fig. 7.3

after Sarmiento & Gruber, Phys. Today (2002)
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CO2 STOCKS, FLUXES, AND ANNUAL GROWTH2

ses, in revision
modified (considerably) from AR4 (2007), Fig. 7.3

after Sarmiento & Gruber, Phys. Today (2002)
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CO2 STOCKS, FLUXES, AND ANNUAL GROWTH2

ses, in revision
modified (considerably) from AR4 (2007), Fig. 7.3

after Sarmiento & Gruber, Phys. Today (2002)
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Assumed sink to terrestrial biosphere plus deep ocean
   agrees with sink based on measured
   increase in atmospheric stock and inventoried emissions. 

Uncertainty from
uncertainty in emission

and variation in atmospheric growth rate
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Model for 
Anthropogenic CO  2



THE DIFFERENTIAL EQUATIONS

Four coupled ordinary differential equations.
Slightly nonlinear because kmidepends    weakly on Si.Sm

dSa
dt

= kam Sa Sa( )+ kma Sm Sm( ) katSa + ktaSt Ftm
pi +Qff (t)+Qlu(t)

dSm
dt

= kma kmdSm + kdmSd +Ftm
pi Fpc

dSd
dt

= kmdSm kdmSd +Fpc

dSt
dt

= katSa ktaSt Qlu(t)

eq eq

kam Sa Sa( )eq Sm Sm( )eq

kma

Required: Transfer coefficients, emissions, 
   initial conditions



Preindustrial

TRANSFER COEFFICIENTS FOR ANTHRO CO22

Transfer
coefficients, yr-1 Anthropogenic

emissions, Pg yr
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9.9 ± 0.50.0031

kam = Fam / Sa ; global mean deposition velocity

kmdzm = kdmzd = vp; global mean piston velocity, 5.5 m yr

k By differenceat Q tot - dSa /dt( )/Sa,ant ] 2016= [ - dSm/dt - dSd/dt

Geophys ppty: from obs’d 
global heat uptake rate

Geophysical property

Acid dissoc chemKam = (dSa/dSm)eq , a known function of Sa, 5–10kma = kamKam; 

CO  -specific

pi pi

kta = kat (  /St
pi Sa

pi ) Preindustrial steady state
Three independent, observationally constrained parameters: kam , vp, and kat

2
Based on present budget - F tm / St

pi pi

  



After abrupt cessation of emissions the CO  concentration in 
the atmosphere recovers substantially toward its original value 
on a time scale of several decades. 

2

 MODELED CO2 MIXING RATIO2
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 Model

Abrupt cessation commencing in 2017



Assumed sink to terrestrial biosphere plus deep ocean
   agrees with sink based on measured and modeled
   increase in atmospheric stock and inventoried emissions. 

Uncertainty from
uncertainty in emission

and variation in atmospheric growth rate
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2
Time constant is roughly the same as turnover time (54 years). 
Atmospheric CO  decreases nearly exponentially after cessation.2

 MODELED CO2 MIXING RATIO2
Abrupt cessation at three start times
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Time constant increases with increasing date of cessation. 
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ANTHROPOGENIC STOCKS



FLUXES AND RATES OF CHANGE OF STOCKS

Deep Ocean and Terrestrial Biosphere initially draw down CO  
   at prior rate. 

Stocks in Atmosphere and ocean Mixed Layer begin to decrease 
   immediately on cessation (negative dS/dt). 
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Sink rate initially unchanged. Stocks initially unchanged.
   Turnover time of Atmos + ML initially unchanged. 
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Lifetime (60 yr) is much shorter than in prior studies.
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SENSITIVITY TO TERRESTRIAL BIOSPHERE STOCK 

Rate and extent of decrease in atmospheric CO  are 
insensitive to ±100% change in transfer coefficient k  .
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With four parameters I can fit an elephant,
and with five I can make him wiggle his trunk.

Von Neumann on Parameters



SENSITIVITY TO TERRESTRIAL BIOSPHERE STOCK 

Rate and extent of decrease in atmospheric CO  are 
insensitive to ±100% change in transfer coefficient k  .

  2

250023002100

 53.8
 59.4
 65.8

, yr400

380

360

340

320

300

280

C
O

  m
ix

in
g 

ra
tio

, p
pm

2

200019501900185018001750

Measurements
 Law Dome
 Cape Grim
 Global

278

     0
 2800   0.0029
 1400   0.0058

St , Pg    kta, Pg yr-1pi
Model

ta



The Radiocarbon Problem
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RADIOCARBON EMISSIONS

Produced by atmospheric testing of nuclear weapons.
Production abruptly ceased because of test ban treaty.
Minor production from nuclear industry.



RADIOCARBON FROM 
ATMOSPHERIC WEAPONS TESTING

Observations

Observations: (1) Broecker et al. [85], (2) Broecker et al. [95], (3) Peacock [04], 
(4) Key et al. [04], (5) Hesshaimer et al. [94]; after Naegler and Levin, [06].



CO2 STOCKS, FLUXES, AND ANNUAL GROWTH2

ses, in revision
modified (considerably) from AR4 (2007), Fig. 7.3

after Sarmiento & Gruber, Phys. Today (2002)
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Present model
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RADIOCARBON FROM 
ATMOSPHERIC WEAPONS TESTING

Observations and model

Observations: (1) Broecker et al. [85], (2) Broecker et al. [95], (3) Peacock [04], 
(4) Key et al. [04], (5) Hesshaimer et al. [94]; after Naegler and Levin, [06].
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PROPORTIONALITY OF GPP AND ATMOSPHERIC CO2
Based on observationally derived water use and water use efficiency

Fit (forced through origin) indicates proportionality of GPP to 
atmospheric CO2.

Cheng, Canadell, et al., Nature Comm., 2017
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The two models would seem to bracket the actual adjustment time. 
Both models agree equally well with observations. 
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RADIOCARBON FROM 
ATMOSPHERIC WEAPONS TESTING

Observations and model

Observations: (1) Broecker et al. [85], (2) Broecker et al. [95], (3) Peacock [04], 
(4) Key et al. [04], (5) Hesshaimer et al. [94]; after Naegler and Levin, [06].
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Lifetime (60 – 100 yr) is much shorter than in prior studies.



CONCLUSIONS AND IMPLICATIONS
The lifetime of excess atmospheric CO2 is bracketed by 

multiple measures to about 60 – 100 years.
This lifetime is much shorter than virtually all previous 

estimates.
All this would be good news for strategies to meet 

climate change targets.
The simple model with 3 or 4 observationally 

constrained parameters accurately represents CO2 
over the Anthropocene and can be used with 
confidence to assess the consequences of 
prospective changes in emissions.


