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ABSTRACT

Unbiased symmetric metrics to quantify the relative bias and error between modeled and
observed concentrations, based on the factor between measured and observed concentrations,
are introduced and compared to conventionally employed metrics. Application to evaluation of
several data sets shows that the new metrics overcome concerns with the conventional metrics
and provide useful measures of model performance.
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1. Introduction

The use of models in the simulation of air quality has seen a rapid increase over the past

two decades in not only the incidence of application but also the scope of that application.

Once used primarily for atmospheric research, these models have had increasing utility in

regulatory application and most recently air quality forecasting.  Regardless of the application,

it is essential that these models be evaluated against measurements in order to characterize

their performances so that confidence can be developed within both the air quality regulatory

and air quality forecasting communities.  The U. S. Environmental Protection Agency (EPA,

1991) developed guidelines, based on Tesche et al. (1990), for a minimum set of statistical

measures to be used for operational evaluation.  Taylor (2001) proposed a graphical method to

summarize multiple aspects of model performance.  Operational evaluations of different air

quality models in the past years have yielded an array of statistical metrics which are so diverse

and numerous that it is difficult to judge the overall performance of the models (Chang and

Hanna, 2004; EPA, 1991; Cox and Tikvart, 1990; Seigneur et al., 2000; Taylor, 2001; Yu et

al., 2003).  Additionally, some of these metrics are inherently deficient in that they are subject

to asymmetry and/or bias.  In this study, a new set of unbiased symmetric metrics for the

operational evaluation is proposed and applied. These new metrics, which are based on the

intuitive and commonly used concept of the factor by which the modeled and observed

quantities differ, provide statistical measures of that factor as both an unsigned quantity that

gives its mean magnitude and as a signed quantity that gives both the mean magnitude of the

factor and its sense -- modeled greater or less than measured.
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2.0  An examination of traditional evaluation metrics

A review of the literature (Chang and Hanna, 2004; EPA, 1984, 1991; Fox, 1981; Willmott,

1982; Cox and Tikvart, 1990; Weil et al., 1992; Seigneur et al., 2000; Yu et al., 2003) reveals a

plethora of metrics (summarized in Table 1) used to quantify the differences between

simulations and observations.  Each of these metrics assumes the existence of a number N of

pairs of modeled and observed concentrations Mi and Oi; the index i might be over time series

at a given location, or over locations in a given spatial domain, or both.   Two of the more

commonly used metrics used to quantify the departure between modeled and observed

quantities are: the mean bias BMB, and the mean absolute gross error EMAGE (see definitions in

Table 1).  The mean bias is a useful measure of the overall over- or under-estimation by the

model; the quantity is expressed in the units of the measurement (e.g., µg m-3) making it useful

especially for considerations of air quality.  Measures other than the bias are useful to

characterize the spread of the departure between model and observations, analogous to the

standard deviation of the departure in addition to the mean departure.  For this reason,

alternative metrics such as the mean absolute gross error EMAGE are commonly employed in

addition to the bias.

It is also frequently desirable to provide a measure of the relative or fractional difference

between the model estimations and observations; this is generally achieved through some sort

of normalization.  Relative measures are particularly useful in comparing the performance of

models for different substances for which concentrations are normally quite different.

Historically, most such relative differences are normalized by the observed quantities.

Examples include: the mean normalized bias (BMNB), the mean normalized absolute error

(EMNAE), the normalized mean bias (BNMB) and the normalized mean absolute error (ENMAE)
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(see Table 1 for definitions).  There are two concerns associated with these approaches to

normalization that can result in misleading conclusions.  This first concern is asymmetry. The

values of both BMNB and BNMB can grow disproportionately as a consequence of the fact that

model overestimates are unbounded whereas underestimates (for quantities such as

concentrations) are bounded by -100%.  The second concern is inflation.  The values of both

BMNB and EMNAE can be greatly inflated by a few instances in which the observed quantity in

the denominator of the expression is quite low relative to the bulk of the observations. Such a

situation is not uncommon, especially when dealing with particulate matter and/or toxins. The

asymmetry issue has been addressed by introduction of the fractional bias BFB and fractional

absolute error EFAE (Seigneur et al., 2000; see Table 1).  Although BFB and EFAE can overcome

the problem of asymmetry between model over- and under-estimation, the significance of the

metrics BFB and EFAE is confounded because the modeled quantity is not evaluated against the

observed quantity alone, but rather against an average of observed and modeled quantities.

This approach thus deviates from the traditional concept of evaluation in which the

observations are considered truth.   A further concern is that the scales of BFB and EFAE are

seriously compressed beyond ±1 as BFB and EFAE are bounded by –2 and +2, and by 0 and +2,

respectively.

These considerations have prompted the definition of new, symmetric, unbiased metrics of

model performance that may be suitable for evaluations of the skill of air quality models and

for the comparison of the skill of multiple models.



6

3.  Development of new metrics

In this study we introduce new metrics that overcome the asymmetry problem between

overestimation and underestimation.  These metrics are based on the intuitive and commonly

used factor Fi between the observed and modeled quantity. Specifically Fi is defined here as

the ratio of modeled quantity to observed quantity if the modeled quantity exceeds the

observed, whereas it is defined as the negative of the ratio of observed to modeled quantity if

t h e  o b s e r v e d  q u a n t i t y  e x c e e d s  t h e  m o d e l e d ,  i . e . ,

F M O M O F O M M Oi i i i i i i i i i= ≥ = − </ / if  and  if  . Note that the magnitude of Fi is always

greater than or equal to unity and that the sign of Fi gives the sense of the departure: positive

denotes modeled quantity greater than observed and negative denotes modeled less than

observed. According to this definition Fi = 1 denotes perfect agreement; Fi = 2 denotes model

is a factor of 2 greater than observation; Fi = -2 denotes model is a factor of 2 less than

observation.

Following this concept, the mean normalized factor bias (BMNFB), the mean normalized

absolute factor error (EMNAFE), the normalized mean bias factor (BNMBF) and the normalized

mean absolute error factor (ENMAEF) are proposed and defined for a number N of pairs of

modeled and observed concentrations Mi and Oi:
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positive if M Oi i≥  and negative if M Oi i< . Note that the expression is symmetric in M and

O; that is if all the M's were replaced by O's and vice versa, the value of B would be the same

(except for sign reversal). The values of BMNFB, and BNMBF are not bounded (range from -∞ to

+∞).  The values of EMNAFE and ENMAEF range from 0 to +∞.  The above equations can be

rewritten in a form that can be can be conveniently used to code a program when these metrics

are applied making use of the quantities S M O M Oi i i i i≡ − −( )/ | |  and S M O M O≡ − −( )/ | |

which denote the sense of the ratio between the modeled and observed quantities; Si  is equal
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In (8) the exponents [ ] /1 2+ S  and [ ] /1 2− S  select which of the two quantities is to appear in

the denominator: for S  = 1 or -1, [ ] /1 2+ S  = 1 or 0, respectively, and conversely for

[ ] /1 2− S .  As with the BMNB and EMNAE, both BMNFB and EMNAFE exhibit another general
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problem when observed values (denominator) are very small, resulting in the inflation of these

metrics.

The above formulas for BNMBF and ENMAEF can be rewritten as follows:

For the OM ≥  case (i.e., overestimation):
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For the OM <  case (i.e., underestimation):
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These equations indicate that if OM ≥ , BNMBF and ENMAEF are identical with BNMB and ENMAE,

respectively.  Equations (9) and (10) show that BNMBF and ENMAEF are actually the result of

summing the individual mean normalized factor biases (BMNFB) and errors (EMNAFE) with the

observed concentrations as a weighting function, respectively.  For the case of OM ≤ (i.e.,

underestimation case), equations (11) and (12) show that BNMBF and ENMAEF are the result of

summing the individual mean normalized factor biases (BMNFB) and errors (EMNAFE) with the

modeled concentrations as a weighting function, respectively.  BNMBF and ENMAEF have the

advantage of both avoiding inflation due to low values of observations in normalization (like

BNMB and ENMAE) and maintaining adequate evaluation symmetry like BFB and EFAE.  Both

BNMBF and ENMAEF are also much easier to interpret than BFB and EFAE.  For example, BNMBF can

be interpreted as follows: if BNMBF is positive, the model overestimates the observations by a
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factor of BNMBF+1; for example for BNMBF =1.2, the model overestimates the observations by a

factor of 2.2.  If BNMBF is negative, the model underestimates the observations by a factor of

1-BNMBF; for example, BNMBF =-1.2, indicates that the model underestimates the observations

by a factor of 2.2.  Thus the metric BNMBF indicates both the magnitude of the factor between

modeled and observed quantities and the sense of that factor (greater or less than unity). The

metric ENMAEF can be interpreted as follows:  if ENMAEF = 1.8, this means that the absolute

gross error is 1.8 times the mean observation and model prediction for overprediction (BNMBF

≥0, or OM ≥ ) and underprediction (BNMBF ≤0, or OM ≤ ), respectively.

4.0  Illustrations of the new metrics

In order to test the robustness of these new metrics against the more commonly used

metrics (listed in Table 1), we applied them to two different model simulations.  In the first

simulation, a scatter plot of the modeled versus observed aerosol NO3
-
 concentrations was

divided into four regions as shown in Figure 1 (i.e., region 1 for 0 0 5< <M Oi i/ . , region 2 for

0 5 1 0. / .< <M Oi i , region 3 for 0.2/0.1 ≤< ii OM  and region 4 for ii OM /0.2 < ). Then, the

conventionally employed metrics in Table 1, along with the several new metrics, were

calculated using different combinations of data in each of the four regions of Figure 1. Table 2

compares the several metrics of model bias and error for the several cases. For the case using

only data from region 1, in which the model underestimated each of the observations by more

than a factor of 2, the values of the conventional measures of model bias, the mean normalized

bias BMNB, the normalized mean bias BNMB, the fractional bias BFB, are –0.82, -0.78, -1.43,

respectively. The new metrics introduced here, the mean normalized factor bias BMNFB and

BNMBF and the normalized mean bias factor were -36.67, and –3.58, respectively.  The value for
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BNMBF (-3.58) indicates that the model underestimated the observations by a factor of 4.58 for

this case, providing the most meaningful description of model performance of the several

metrics.   Similarly for the case with data only in region 4, in which the model overestimated

all observations by more than a factor of 2, the values of BMNB, BNMB, BFB, BNMFB, and BNMBF

are 4.27, 2.25, 1.06, 4.27 and 2.25, respectively.  The normalized mean bias factor BNMBF again

provides the most meaningful description of the performance, i.e., that the model

overestimateed the observations by a factor of 3.25.  It is especially interesting to see the

results of each metric on a case combining two regions 1 and 4, that is regions of substantial

model underestimation and substantial overestimation. Here BMNB, BNMB, BFB, BNMFB, BMNFB

and BNMBF are 1.50, 0.06, -0.27, 0.06, -18.02 and 0.06, respectively.  Both BNMB and BNMBF

show that the model slightly overestimated the observations, by a factor of 1.06, whereas the

values of BFB (-0.27) and BMNFB (-18.02) are negative, indicating underestimation. This shows

that the values of BFB and BMNFB can at times provide misleading (and in the case of BMNFB,

inflated) conclusions, in large part because of their use of both model estimations and

observations in the normalization.  Although the model mean (1.54 µg m-3) is close to that of

the observation mean (1.45 µg m-3) and the values of BNMB and BNMBF are small (0.06), both

ENMAE and ENMAEF (1.19) show that the absolute factor error between observations and model

results is 1.19 times the mean observation.  This indicates that assessment of model

performance requires consideration of both relative bias (BNMBF) and relative absolute error

(ENMAEF).

For the combination of areas 2 and 3, the values of the different metrics tend to converge;

all measures of error are between 0.33 and 0.43, and all measures of bias are positive and

between 0.06 and 0.14. For the entire dataset, the values of BMNB, BNMB, BFB, BMNFB and BNMBF
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are 0.96, 0.09, -0.13, -10.75 and 0.09, respectively.  Both BNMB and BNMBF show that the mean

model overestimated the mean observation by a factor of 1.09, but the values of BFB and BMNFB

are once again negative (-0.13, -10.75) and in the case of BMNFB greatly inflated.

As a second example, the metrics were applied to evaluate the performances of eleven

different chemical transport models (Table 3) simulating annual average concentration of non-

seasalt (nss) SO4
2- at several island and coastal locations in the North and South Atlantic, as

compared with measurements in Figure 2.  These comparisons illustrate that conventional

metrics can yield misleading results that are overcome by the metrics introduced here. For

example, the correlation coefficient r can be near unity despite systematic model underestimate

(Model A); the systematic model underestimation is well captured by the metrics BNMBF and

ENMAEF.  A model such as F, which arguably does comparably to or better than model D in

capturing the observations as shown in Figure 2,  exhibits much greater BMNB and EMNAE

values as a consequence of inflation due to low observed values; in contrast the metrics BNMBF

and ENMAEF clearly indicate that Model A does only slightly better than Model D.  For

illustrative purposes, results from three fictitious model simulations were also evaluated:

Model “L” underestimates the observations by 100% (modeled concentrations are all zero);

model “M” systematically overestimates the observations by 100% or a factor of 2; and model

“N” assumes that all of the modeled values are +∞.  The conventional metrics BMB, EMAGE,

ERMSE, BMNB, EMNAE, BNMB, and ENMAE result in a great asymmetry between the model over-

and under-estimation.  For example, the metric BNMB is the same in magnitude, differing only

in sign, for overestimation by a factor of 2 and underestimation by a factor of ∞ (model results

uniformly zero) (cases M and L), despite considerable model skill in the first instance and no

model skill whatsoever in the second instance. In contrast the newly proposed statistical



12

metrics, BNMBF and E NMAEF, provide much more meaningful measures of the relative

performance of these models, i.e., infinite error for model estimation zero and +1 (100%) for

model estimation a factor of two high.  For the criteria of model performance taken as: |BNMBF|

≤ 25% and ENMAEF ≤ 35%, only models E, G, and H satisfy these criteria, with the best

performance being exhibited by model H and the worst performance being exhibited by model

A; these metrics are consistent with the scatter plots of Figure 2.

5.0  Applications of new metrics using CMAQ simulations

Further illustration of the utility of the newly proposed metrics is provided for a simulation

annual mean concentrations of SO4
2- and NO3

- carried out with the U. S. EPA Models-

3/Community Multiscale Air Quality (CMAQ) model (2004 release; version 4.4). Further

information about the simulations, including details on the networks used in the evaluation

(Clean Air Status and Trends Network (CASTNet), Interagency Monitoring of Protected

Visual Environments (IMPROVE), and Speciated Trends Network (STN)) can be found in

Eder and Yu (2006).   Table 4 reveals that for SO4
2- concentrations the vast majority of the

simulations agree with the observations within a factor of 2 (Fig. 4). The BNMBF values for each

of the three networks, tend to be small and negative, ranging from -0.02 (STN) to -0.06

(IMPROVE) and -0.11 (CASTNet).  This indicates that the CMAQ model underestimated

SO4
2- concentrations by a factors ranging from 1.02 to 1.11.   Examination of the BNMBF as a

function of location (Fig. 3) reveals better performance over the eastern half of the domain,

where the majority of BNMBF values lie within ± 0.50.   Performance degrades somewhat in the

West, especially in California, where values of BNMBF are often below -1.00, indicating that the

model underestimates by more than a factor of 2.
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For aerosol NO3
-, the BNMBF values associated with the CASTNet and IMPROVE networks

are small and positive, ranging from 0.04 (IMPROVE), to 0.05 (CASTNet).  They are negative

and somewhat larger for STN sites (-0.19).  This indicates that CMAQ slightly overestimations

NO3
- concentrations by factors of 1.04 and 1.05 for IMPROVE and CASTNet, respectively,

while underestimating against STN sites by a factor of 1.19.  When examined over the spatial

domain (Fig. 4), large differences in performance become evident.  For example, CMAQ tends

to overestimate NO3
- concentrations in the eastern portion of the domain, where BNMBF often

exceeds +0.50, while it tends to underestimate in most western locations, where BNMBF falls

below -0.50 (factors of 1.5 over- and under-estimates, respectively).   Exceptions to this

general east versus west difference do exist, most notably for locations along the Gulf of

Mexico, where the model underestimates by more than a factor of 2, and in Washington and

Oregon, where the model overestimates.

6.0 Summary

In addition to some commonly used metrics, four new symmetric metrics are

introduced, two of which (i.e., BNMBF and ENMAEF) are found to be statistically robust measures

of the factor by which the model results differ from the observations and of the sense of that

factor.  These two new metrics provide readily interpretable measures of model performance

that are symmetric and avoid inflation that may be caused by low values of observed

quantities.  These metrics use only observed data as the model evaluation and thus serve as the

basis for a rigorous evaluation of model performance.
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Table 1.  Summary of quantitative metrics commonly used in the operational evaluation of air quality model
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Table 2.  Results of different metrics in Table 1 for different combinations of datasets in Figure 1

Combination* 1 2 3 4 1+3 1+4 2+3 2+4 1+2+3+4

O 1.92 2.15 2.11 0.88 2.00 1.45 2.13 1.36 1.72

M 0.42 1.58 2.94 2.88 1.49 1.54 2.39 2.39 1.88
N 903 450 663 755 1566 1658 1113 1205 2771
r 0.79 0.97 0.97 0.90 0.54 0.32 0.90 0.63 0.51

Difference
BMB -1.50 -0.57 0.83 1.99 -0.52 0.09 0.26 1.04 0.16
EMAGE 1.50 0.57 0.83 1.99 1.22 1.73 0.72 1.46 1.32
ERMSE 4.25 1.07 1.29 2.70 3.33 3.62 1.20 2.23 2.91

Relative Difference
BMNB -0.82 -0.27 0.43 4.27 -0.29 1.50 0.14 2.57 0.96
EMNAE 0.82 0.27 0.43 4.27 0.65 2.39 0.36 2.78 1.58
BNMB -0.78 -0.26 0.39 2.25 -0.26 0.06 0.12 0.76 0.09
ENMAE 0.78 0.26 0.39 2.25 0.61 1.19 0.34 1.07 0.77
BFB -1.43 -0.33 0.33 1.12 -0.68 -0.27 0.06 0.58 -0.13
EFAE 1.43 0.33 0.33 1.12 0.96 1.29 0.33 0.83 0.90
BMNFB -36.67 -0.43 0.43 4.27 -20.96 -18.02 0.08 2.52 -10.75
EMNAFE 36.67 0.43 0.43 4.27 21.32 21.91 0.43 2.84 13.28
BNMBF -3.58 -0.36 0.39 2.25 -0.35 0.06 0.12 0.76 0.09
ENMAEF 3.58 0.36 0.39 2.25 0.82 1.19 0.34 1.07 0.77

* Combinations 1, 2, 3, and 4 represent the data in regions 1, 2, 3, and 4 of Figure 1, respectively.  Combination
“1+3” represents the data in region 1 and region 3 in Figure 1.
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Table 3.  Results of different metrics in Table 1 for the performances of different models on non-seasalt sulfate in Figure 2.

* The units ofO , M , BMB, EMAGE and ERMSE are µg m-3.

Models A B C D E F G H I J K L M N

O 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

M 0.35 1.37 1.19 1.34 1.22 1.16 1.19 1.02 0.79 1.23 0.67 0.00 1.95 +∞
N 9 9 9 9 9 9 9 9 9 9 9 9 9 9
r 0.96 0.84 0.74 0.78 0.84 0.77 0.95 0.98 0.61 0.69 0.77 0.00 1.00 0.00

Difference
BMB -0.63 0.40 0.21 0.37 0.24 0.18 0.21 0.05 -0.19 0.25 -0.31 -0.98 +0.98 +∞
EMAGE 0.63 0.46 0.42 0.52 0.34 0.42 0.24 0.14 0.42 0.52 0.41 0.98 +0.98 +∞
ERMSE 0.79 0.55 0.52 0.70 0.49 0.48 0.37 0.16 0.58 0.63 0.55 0.98 +0.98 +∞

Relative Difference
BMNB -0.65 1.23 0.91 0.38 0.70 1.40 0.34 0.33 0.19 0.75 -0.06 -1.00 +1.00 +∞
EMNAE 0.65 1.26 1.01 0.60 0.80 1.58 0.39 0.39 0.59 0.94 0.52 1.00 +1.00 +∞
BNMB -0.64 0.41 0.22 0.38 0.25 0.18 0.21 0.05 -0.20 0.26 -0.32 -1.00 +1.00 +∞
ENMAE 0.64 0.47 0.43 0.53 0.34 0.43 0.25 0.15 0.44 0.53 0.42 1.00 +1.00 +∞
BFB -1.00 0.53 0.37 0.16 0.30 0.35 0.22 0.16 -0.04 0.30 -0.24 -2.00 +0.67 +∞
EFAE 1.00 0.56 0.48 0.45 0.43 0.56 0.27 0.24 0.47 0.53 0.53 2.00 +0.67 +∞
BMNFB -0.95 0.34 0.20 0.32 0.22 0.17 0.19 0.05 -0.22 0.23 -0.37 -∞ +1.00 +∞
EMNAFE 0.95 0.39 0.39 0.45 0.31 0.39 0.22 0.14 0.48 0.47 0.50 +∞ +1.00 +∞
BNMBF -2.81 1.23 0.89 0.27 0.66 1.35 0.34 0.32 0.02 0.69 -0.34 -∞ +1.00 +∞
ENMAEF 2.81 1.26 1.02 0.70 0.84 1.63 0.39 0.40 0.76 1.00 0.80 +∞ +1.00 +∞
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 Table 4.  Statistical metrics associated with an annual simulation (2001) of the 2004 release of
Models-3 CMAQ

SO4
2- NO3

-

Network CASTNet IMPROVE STN CASTNet IMPROVE STN

O 2.88 1.60 3.33 1.04 0.50 1.48

M 3.21 1.69 3.40 0.99 0.48 1.77

N 3736 13447 6970 3735 13398 6130
r 0.92 0.85 0.77 0.67 0.52 0.37
BMB -0.32 -0.09 -0.07 0.05 0.02 -0.29
EMAGE 0.80 0.66 1.43 0.70 0.46 1.42
BNMBF -0.11 -0.06 -0.02 0.05 0.04 -0.19
ENMAEF 0.28 0.41 0.43 0.71 0.94 0.96
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Figure 1. Comparison of modeled (Mi) and observed (Oi) aerosol NO3
- concentrations.  The 1:1, 2:1, and 1:2

lines are shown for reference.
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Figure 2. Comparisons  annual average concentrations of non-seasalt sulfate from eleven chemical transport
models with observations at a series of island and coastal stations in the North and South Atlantic. Data are from
Penner et al. (2001).
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Figure 3. Scatter plot of SO4 
2- between the CMAQ model (Mi) and observation (Oi) (upper panel), and spatial

distributions of BNMBF and BNMAEF over the US for different networks for 2001 simulation. The 1:1, 2:1, and 1:2
lines are shown for reference in the scatter plots.
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Figure 4. Same as Figure 3 but for NO3
-.




