Thesis on Optimizing Magnet Designs

IMPROVING THE DESIGN AND ANALYSIS OF SUPERCONDUCTING MAGNETS FOR PARTICLE ACCELERATORS
Thesis by Ramesh Gupta

Whole Thesis in pdf (6.5 MB)

CONTENTS (in pdf)

1. REVIEW OF THE FIELD . . . . . (in pdf) . . . . . . . . . . . 1

1.1. Introduction . . . . . . . . . . . . . . . . . . . . . ………… . . . . . . . . 1
1.2. Physics Potentials and Goals of RHIC . .  . . ………… . . . . . 2
1.3. Overview of RHIC Machine . . . . . . . . .  . . . ………… . . . . 5
1.4. Superconducting Magnets . . . . . . . . . . .  . . . . ………… . . . 8

1.4.1. Introduction to the Magnet Geometry . . . . . . . . . . 8
1.4.2. Superconducting Cable . . . . . . . . . . . . . . . . . . . . 10
1.4.3. Cryogenic System . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.4. Mechanical Design . . . . . . . . . . . . . . . .. . . . . . . . 14
1.4.5. Magnetic Design . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.6. Magnet Construction . . . . . . . . . . . . . . . . . . . . . . 16
1.4.7. Magnet Measurements . . . . . . . . . . . . .  . . . . . . . 17

1.5. Magnetic Field Analysis in Accelerator Magnets . . . (in pdf) . . . 22

1.5.1. Basic Electromagnetic Field Equations . .. . . . . . . . . . 22
1.5.2. Field Harmonic Definitions . . . . . . . . . . . . . . . . . . . . 26
1.5.3. Analytic Expressions for Accelerator Magnets  . . . . . 31

1.5.3.1. Field and Vector Potential due to a Line Current . . . . .. . . 31
1.5.3.2. Line Current in a Cylindrical Iron Cavity . . . . . . ….. . . .. . 36
1.5.3.3. Line Current in a Cylindrical Iron Shell . . . . . . . . . . …… . 40
1.5.3.4. Field and Harmonics due to Current Blocks in Air . . . . . . 44
1.5.3.5. Field Harmonics due to Current Blocks in a Cylindrical Iron Shell . . . 47
1.5.3.6. COS(mq) Current Distribution for Ideal Fields . . . ………………. . . . . 48
1.5.3.7. COS(mq) Current Distribution in a Cylindrical Iron Shell . . ………… . 54
1.5.3.8. Intersecting Circles with a Constant Current Density for Ideal Fields…57

1.5.4. Complex Variable Method in 2­d Magnetic Field Calculations …… 60

1.5.4.1. Field due to an array of Line Currents . . . . …… . . . . . . . 62
1.5.4.2. Beth’s Current Sheet Theorem . . . . . . . . . . . ……… . . . . 63
1.5.4.3. Example — Cos(mq) current distribution . . . . . …… . . . . 65

1.6. Methods Investigated for Improving Field Quality . . . . . ………….. . . . . . . 66

1.6.1. Improvements in the Computational and Analysis Methods  …… . 66
1.6.2. Field Quality Improvements through Yoke Design . . …. . . . . . . . 67
1.6.3. Field Quality Improvements through Coil Design . . . . …… . . . . . 67
1.6.4. Field Quality Improvements after Construction . . . . . ……. . . . . . 68
1.6.5. Optimized Cross section Designs . . . . . . . …………. . . . . . . . . . . 69

2. IMPROVEMENTS IN THE COMPUTATIONAL AND ANALYSIS METHODS …(in pdf)… 70

2.1. Introduction . . . . . . . . . . . . …………………………… . . . . . . . . . . . . . . . . . 70
2.2. Computer Aided Cross­section Measurement and Analysis . . . . ……. . . . 71
2.3. IMPROVEMENTS IN THE POISSON GROUP CODES . . . … . . . . . 78

2.3.1. Upgraded AUTOMESH — Input Method No. 1 . . . . … . . . . . . 79
2.3.2. Upgraded AUTOMESH — Input Method No. 2 . . . . . … . . . . . 83
2.3.3. Upgraded AUTOMESH — Input Method No. 3 . . . . . . … . . . . 88

2.4. Conclusions on the Improvements in the Computational and Analysis Methods . . . . . . 91

3. FIELD QUALITY IMPROVEMENTS THROUGH YOKE DESIGN . . . (in pdf) . . . 92

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.2. Reduction in Saturation Induced Allowed Harmonics . . . . . . . . . . . 102

3.2.1. Varying the yoke inner radius . . . . . . . . . . . . . . . . . . . 103
3.2.2. Varying the yoke outer radius . . . . . . . . . . . . . . . . . . . 111
3.2.3. Varying the location of the helium bypass hole in the yoke . . . . . 116
3.2.4. Additional Saturation suppressor holes in the iron yoke . . . . . . . 123
3.2.5. Yoke­yoke alignment keys . . . . . . . . . . . . . . . . . . . . . 129
3.2.6. Yoke collaring keys . . . . . . . . . . . . . . . . . . . . . . . . 132
3.2.7. Tooth at the midplane of the yoke aperture . . . . . . . . . . . . . 135
3.2.8. Cutout or Bump in the iron aperture . . . . . . . . . . . . . . . . 139
3.2.9. Elliptical iron aperture . . . . . . . . . . . . . . . . . . . . . . 145
3.2.10. Two radius aperture yoke . . . . . . . . . . . . . . . . . . . . . 149

3.3. Saturation Induced Allowed Harmonics in RHIC Arc Dipoles . . . . . . . 153
3.4. Reduction in the Saturation-­induced Non­-allowed Harmonics . . . . . . . 169

3.4.1. b1 saturation — Cross talk . . . . . . . . . . . . . . . . . . . . . 170
3.4.2. a1 saturation — Cryostat and other sources . . . . . . . . . . . . 176

3.5. a1 Saturation in SSC Dipole Magnets . . . . . . . . . . . . . . . . . . 182

3.5.1. da1 variation with axial position within a magnet . . . . . . . . . . 182
3.5.2. Magnet to magnet variations in the integral da1 . . . . . . . . . . 185
3.5.3. Compensation of the saturation induced a1 in SSC magnets . . . .  . 188

3.6. a1 Saturation in RHIC Dipole Magnets . . . . . . . . . . . . . . . . . 190

3.6.1. Magnet to magnet variation in a1 saturation . . . . . . . . . . . . 190
3.6.2. Reduction in a1 saturation in RHIC dipoles . . . . . . . . . . . . 194

3.7. Conclusions on the Field Quality Improvements through Yoke Design . .  . 200

4. FIELD QUALITY IMPROVEMENTS THROUGH COIL DESIGN .  . . (in pdf) . . . 206

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
4.2. Sources of Harmonics Allowed by the Magnet Geometry . . . . . . . . . 209
4.3. Reduction in the Allowed Harmonics through Wedges . . . . . . . . . . 210
4.4. Reduction in the Allowed Harmonics in RHIC Arc Dipoles by Changing the Midplane Gap . .212
4.5. Reduction in b3 in RHIC Quadrupoles with Midplane Gaps . . . . . . . . 214
4.6. Coil Cross-­section Iterations without Changing Wedges . . . . . . . . . . 216
4.7. Conclusions on the Field Quality Improvements through Coil Design . . . . 219

5. FIELD QUALITY IMPROVEMENTS AFTER CONSTRUCTION . . . (in pdf) . . . 220

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

5.2. Tuning Shims in Magnet Body for Extra High Field Quality . . . (in pdf) . . . 222

5.2.1. Tuning Shims in the RHIC Interaction Region Quadrupoles . .. . . . 222
5.2.2. Tuning Shim and the Magnet Design . . . . . . . . . . . . . . . . 224
5.2.3. Procedure for Implementing the Tuning Shim Correction . . . . . . 227
5.2.4. Calculations for Tuning Shim Corrections . . . . . . . . . . . . . 229

5.2.4.1. Approximate Analytic Expressions for Low Field Estimate . . . . . . 230
5.2.4.2. Numerical Calculations for Low Field Correction . . . . . . . 233
5.2.4.3. Numerical Calculations for High Field Correction . . . . . . . 243

5.2.5. Symmetries in the Harmonics Generated by Tuning Shims . . . . . . . . . 249
5.2.6. Independent and Coupled Changes in Harmonics Correction . . . .  . . 250
5.2.7. Comparison with the Measurements . . . . . . . . . . . . . . . . 250
5.2.8. Tuning Shim Correction Vs. External Correctors . . . . . . . . . . 255

5.3. Tuning Yoke Length at Magnet Ends for Field Correction . . . . . . . . . 258

5.3.1. Yoke Length for Integral a1 Correction . . . . . . . . . . . . . . . 260
5.3.2. Yoke Length for Integral Transfer Function Correction . . . . . . . 262

5.4. Conclusions on the Field Quality Improvements after Construction . . . 264

6. OPTIMIZED CROSS SECTION DESIGNS . . . . . . . . (in pdf) . . . . . . . 265

6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

6.2. SSC 50 mm Aperture Collider Dipole Magnet Cross­section . . . (in pdf) . . . . 266

6.2.1. Coil Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
6.2.2. Low Field Harmonics . . . . . . . . . . . . . . . . . . . . . . . 268
6.2.3. Iron Yoke Design . . . . . . . . . . . . . . . . . . . . . . . . . 270
6.2.4. Expected Quench Performance . . . . . . . . . . . . . . . . . . . 278
6.2.5. Effect of Manufacturing Errors on the Allowed Harmononics . . . 280
6.2.6. Stored Energy and Inductance Calculations . . . . . . . . . . . . . 282
6.2.7. Lorentz Force Calculations . . . . . . . . . . . . . . . . . . . . 283
6.2.8. Summary of the Design . . . . . . . . . . . . . . . . . . . . . . 284

6.3. RHIC 130 mm Aperture Interaction Region Quadrupole Cross-section . . . (in pdf) . . . 286

6.3.1. Basic Construction . . . . . . . . . . . . . . . . . . . . . . . . 286
6.3.2. Coil Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . 287
6.3.3. Yoke Cross Section . . . . . . . . . . . . . . . . . . . . . . . . 293
6.3.4. Expected Quench Performance . . . . . . . . . . . . . . . . . . . 300

6.4. Conclusions on the Optimized Cross Section Designs . . . . . . . . . . . 301

7. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK . . . (in pdf) . . . 302

References . . . . . . . (in pdf) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

List of Figures . . . .  (in pdf) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

List of Tables . . . . . (in pdf) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

COPIES OF PUBLICATIONS . . . .(link to a few papers). . . . . 332