1968 Contents

Table of contents as they appeared in the original proceedings

Directly Jump to    1st Week        2nd Week      3rd Week     4th Week     5th Week     6th Week

Author Index


Introductory Remarks – Maurice Goldhaber, Director, Brookhaven National Laboratoryiii
Editor’s Preface – Albert G. Prodell, Brookhaven National Laboratoryiv
Introduction – John P. Blewett, Brookhaven National Laboratory  v
  
FIRST WEEK – SUPERCONDUCTING RF CAVITIES AND LINACS 
Chairman: H.A. Schwettman, Stanford University 
(Photos) 
The Development of Low Temperature Technology at Stanford and its Relevance to High Energy Physics1
    H. Alan Schwettman, Stanford University 
  
Q Measurements on Superconducting Cavities at S-Band  13
     H. Hahn, H.J. Halama, and E.H. Foster, Brookhaven National Laboratory 
  
Coupling Losses in Superconducting Cavities18
     H. Hahn and J. Miller, Brookhaven National Laboratory 
  
Fabrication of Niobium Rf Cavities23
     R.W. Meyerhoff, Union Carbide Corporation 
  
Fabrication of High Q Superconducting Niobium Cavities32
     I. Weissman, Varian Associates 
  
Materials Investigation for a Two-Mile Superconducting Accelerator34
     M.A. Allen and H.A. Hogg, Stanford Linear Accelerator Center 
  
Characterization of Residual Rf Losses in Superconductors40
     C.R. Haden, University of Oklahoma 
  
Technetium as a Material for ac Superconductivity Applications49
     S.H. Autler, NASA Electronics Research Center 
  
Applications of the Fountain Effect in Superfluid Helium52
     C.M. Lyneis, M.S. McAshan, and H.A. Schwettman, Stanford University 
  
Refrigeration at Temperatures Below the Boiling Point of Helium59
     S.C. Collins, 500 Incorporated 
  
Rf Amplitude and Phase Stabilization for a Superconducting Linear Accelerator by Feedback Stabilization Techniques67
     L.R. Suelzle, Stanford University 
  
Particle Motion in a Standing Wave Linear Accelerator79
     E.E. Chambers, Stanford University 
  
Sample Parameters of a Two-Mile Superconducting Accelerator101
     R.B. Neal, Stanford Linear Accelerator Center 
  
Consideration of the Use of Feedback in a Traveling-Wave Superconducting Accelerator111
     R.B. Neal, Stanford Linear Accelerator Center 
  
Summary of Recent Investigations of the Karlsruhe Group on Rf Properties of Superconductors and on Applications127
     W. Jungst, Kernforschungszentrum Karlsruhe 
  
An Enriched Particle Beam Using Superconducting Rf Deflectors136
     H.N. Brown, Brookhaven National Laboratory 
  
Design Problems in Superconducting Rf Beam Separators150
     H.J. Halama, Brookhaven National Laboratory 
  
Superconducting Rf Separator Research at the Rutherford Laboratory165
     A. Carne, B.G. Brady, and M.J. Newman, Rutherford Laboratory 
  
Beam Optics Design for a 600 MeV Microtron169
     D.C. Sutton and A.O. Hanson, University of Illinois 
  
High Stability UHF Oscillators using a Superconducting Cavity171
     F. Biquard, Nguyen Tuong Viet, and A. Septier, Institut d’Electronique, Orsay 
  
Summary of First week of Summer Study187
     H. Alan Schwettman, Stanford University 
  
SECOND WEEK – CRYOGENICS 
Chairman: T.R. Strobridge, NBS, Boulder 
 (Photos) 
Refrigeration at 4 0K193
     T.R. Strobridge, National Bureau of Standards, Boulder 
  
European State of the Art in Cryogenics205
     G. Prast, Philips Research Laboratories 
  
Cryogenic Safety229
     M.G. Zabetakis, Bureau of Mines 
  
Cryopumping230
     C. Barnes, CVI Corporation 
  
Review of Heat Transfer to Helium I249
     R.V. Smith, National Bureau of Standards, Boulder 
  
An Examination of a Liquid Helium Refrigeration System for Superconducting Magnets in the 200 GeV Experimental Area293
     M.A. Green, Lawrence Radiation Laboratory, Berkeley, and G.P. Coombs and J.L. Perry, 500  Incorporated 
  
Cryogenic Electrical Leads304
     C.D. Henning, Lawrence Radiation Laboratory, Livermore 
  
Low Temperature Metals311
     A. Hurlich, General Dynamics/Astronautics 
  
Properties of Nonmetallic Materials at Cryogenic Temperatures326
     R. Mowers, Rocketdyne 
  
Review of the Cryogenics Session – Second Week of the Summer Study368
     T.R. Strobridge, National Bureau of Standards, Boulder 
  
THIRD WEEK – SUPERCONDUCTING  MATERIALS 
Chairman: A. Paskin, Brookhaven National Laboratory 
 (Photos) 
Structure and Properties of High-Field Superconductors377
     J.D. Livingston, General Electric Company 
  
Instability Comments393
     S.L. Wipf, Atomics International 
  
Critical Current Behavior of Hard Superconductors396
     W.W. Webb, Cornell University 
  
Critical Fields of Type II Superconductors405
     G. Cody, RCA Laboratories 
  
The Effect of Radiation on the Properties of Superconducting Materials437
     G.W. Cullen, RCA Laboratories 
  
Niobium Tin and Related Superconductors449
     R.B. Britton, Brookhaven National Laboratory 
  
Composite Materials465
     A.D. McInturff, Brookhaven National Laboratory 
  
Materials and Conductor Configurations in Superconducting Magnets478
     H. Brechna, Stanford Linear Accelerator Center 
  
FOURTH WEEK – AC EFFECTS AND FLUX PUMPS 
Chairman: S.L. Wipf, Atomics International 
 (Photos) 
Ac Losses in Superconductors511
     S.L. Wipf, Atomics International 
  
Use of Superconductors in High Energy Physics544
     J.P. Blewett, Brookhaven National Laboratory 
  
Electrical Loss Measurements in a NbTi Magnet550
     F. Voelker, Lawrence Radiation Laboratory, Berkeley 
  
Ac Losses in Magnets made of Nb3Sn Ribbon559
     G.H. Morgan and P.F. Dahl, Brookhaven National Laboratory 
  
Dynamic Resistivity of Hard Superconductors in a Perpendicular Time Varying Field567
     A. Altorfer, F. Caimi, and J.M. Rayroux, Oerlikon Engineering Company 
  
Magnetic Instabilities and Solenoid Performance: Applications of the Critical State Model571
     H.R. Hart, Jr., General Electric Company 
  
Magnetic and Thermal Instabilities Observed to Commercial Nb3Sn Superconductors601
     G. del Castillo and L.O. Oswald, Argonne National Laboratory 
  
Observations of Flux Jump Behavior Related to Various Changes of Geometry, and Thermal  and Electrical Environment612
     A.D. McInturff, Brookhaven National Laboratory 
  
Instabilities and Flux Annihilation619
     S.L. Wipf, Atomics International 
  
Superconducting Transmission Lines – Communication and Power622
     N.S. Nahman, National Bureau of Standards, Boulder 
  
Recent Developments in Superconductivity in Japan628
     Presented by N. Takano, Tokyo Shibaura Electric Company 
  
The Case for Flux Pumps and Some of Their Uses632
     S.L. Wipf, Atomics International 
  
Design Principles and Characteristics of the G.E. Flux Pump654
     R.L. Rhodenizer, General Electric Company 
  
Flux Pumps as Power Supplies in Comparison with Alternatives667
     M.S. Lubell and K.R. Efferson, Oak Ridge National Laboratory 
  
Flux Pump Work at Los Alamos673
     H. Laquer, Los Alamos Scientific Laboratory 
  
60 Hz Flux Pumps679
     R.B. Britton, Brookhaven National Laboratory 
  
Proposal for a Flux Pump Utilizing the Inverse Ettingshausen Effect in Hard Type II Superconductors in the Mixed State681
     W.H. Bergmann, Argonne National Laboratory 
  
Summary of the Fourth Week – Ac Losses, Instability and Flux Pumps683
     S.L. Wipf, Atomics International 
  
FIFTH WEEK – SUPERCONDUCTING MAGNETS 
Chairman: W.B. Sampson, Brookhaven National Laboratory 
 (Photos) 
Stress Problems Associated with Superconducting and Cryogenic Magnets709
     P.G. Marston, Magnetic Engineering Associates 
  
Stresses in Magnetic Field Coils714
     W.F. Westendorp and R.W. Kilb, General Electric Company 
  
Very High Field Hybrid Magnet Systems727
     D. Bruce Montgomery, J.E.C. Williams, N.T. Pierce, R. Weggel, and M.J. Leupold,      Francis Bitter National Magnet Laboratory 
  
Principles of Stability in Cooled Superconducting Magnets748
     Z.J.J. Stekly, R. Thome, and B. Strauss, Avco Everette Research Laboratory 
  
The 1.8 Tesla, 4.8 m i.d. Bubble Chanmer Magnet765
     J.R. Purcell, Argonne National Laboratory 
  
The Superconducting Magnet for the Proposed 25-foot Cryogenic Bubble Chamber786
     A.G. Prodell, Brookhaven National Laboratory 
  
The Superconducting Magnet for the Brookhaven National Laboratory 7-foot Bubble chamber794
     D.P. Brown, R.W. Burgess, and G.T. Mulholland, Brookhaven National Laboratory 
  
A 70 kilogauss Magnet for the Proposed Rutherford Laboratory 1.5 m Diameter Hydrogen Bubble Chamber815
     P.T.M. Clee, D.B. Thomas, and C.W. Trowbridge, Rutherford Laboratory 
  
Development Program for the Magnet of the European 3.7 m Bubble Chamber828
    Presented by F. Wittgenstein, CERN 
  
A Possible Source of Instability in “Fully Stabilized” Magnets839
     P.F. Smith, M.N. Wilson, and J.D. Lewin, Rutherford Laboratory 
  
Analytical Design of Superconducting Multipolar Magnets843
     Richard A. Beth, Brookhaven National Laboratory 
  
Superconducting Magnetic Dipoles860
     G. Parzen, Brookhaven National Laboratory 
  
Superconducting Quadrupole Focusing Lens – Part I: Analytical Design and Full-Scale Copper-Wound Pole866
     A. Asner, CERN 
  
Superconducting Quadrupole Focusing Lens – Part II: Construction and Preliminary Tests880
     D.N. Cornish, Culham Laboratory 
  
Quadrupole Focusing Magnet886
     J.D. Rogers, W.V. Hassenzahl, H.L. Laquer, and J. K. Novak, Los Alamos National Laboratory 
  
The Rutherford Laboratory Bending Magnet888
     M.N. Wilson, R.V. Stovold, and J.D. Lawson, Rutherford Laboratory 
  
Brookhaven Superconducting dc Beam Magnets893
     R.B. Britton, Brookhaven National Laboratory 
  
Pulsed Superconducting Magnets908
     W.B. Sampson, Brookhaven National Laboratory 
  
Intrinsically Stable Conductors913
     P.F. Smith, M.N. Wilson, C.R. Walters, and J.D. Lewin, Rutherford Laboratory 
  
Superconducting Magnets for Controlled Thermonuclear Research920
     C.E. Taylor, Lawrence Radiation Laboratory, Livermore 
  
On Helium II Microstabilization of Nb3Sn926
     W.H. Bergmann, Argonne National Laboratory 
  
Progress on the IMP Facility929
     D.L. Coffey and W.F. Gauster, Oak Ridge National Laboratory 
  
Standardized Tests for Superconducting Materials944
     W.F. Gauster, Oak Ridge National Laboratory 
  
Superconducting Magnets for the 200 GeV Accelerator Experimental Areas946
     R.B. Meuser, Lawrence Radiation Laboratory, Berkeley 
  
Construction of a Superconducting Test Coil Cooled by Helium Forced Circulation953
     M. Morpurgo, CERN 
  
Summary of Fifth Week of Summer Study962
     W.B. Sampson, Brookhaven National Laboratory 
  
SIXTH WEEK – ACCELERATORS AND STORAGE RINGS USING SUPERCONDUCTING OR CRYOGENIC MAGNETS 
Chairman: J.P. Blewett, Brookhaven National Laboratory 
 (Photos) 
Superconducting Synchrotrons967
     P.F. Smith, Rutherford Laboratory 
  
Economic Factors Involved in the Design of a Proton Synchrotron or Storage Ring with a Superconducting Guide Field981
     M.A. Green, Lawrence Radiation Laboratory, Berkeley 
  
A 2000 GeV Superconducting Synchrotron998
     W.B. Sampson, Brookhaven National Laboratory 
  
Synchrotron Power Supplies using Superconducting Energy Storage1002
     P.F. Smith, Rutherford Laboratory 
  
Some ac Loss Determinations by an Electric Multiplier Method1007
     W.S. Gilbert, Lawrence Radiation Laboratory, Berkeley 
  
Radiation Effects on Superconducting Magnets1011
     H. Brechna, Stanford Linear Accelerator Center 
  
Iron Shielding for Air Core Magnets1042
     J.P. Blewett, Brookhaven National Laboratory 
  
Superconducting EFAG Accelerators1052
     G. Parzen, Brookhaven National Laboratory 
  
Calculations Concerning Superconducting Accelerators1059
     P. Gerald Kruger and J.N. Snyder, University of Illinois 
  
Preliminary Steps for Applying Superconductors to FFAG Accelerators1075
     G. del Castillo, R.J. Lari, and L.O. Oswald, Argonne National Laboratory 
  
A Superconducting SLAC with a Recirculating Beam1089
     W.B. Herrmannsfeldt, Stanford Linear Accelerator Center 
  
Properties and Preparation of High-Purity Aluminum1095
     V. Arp, National Bureau of Standards, Boulder 
  
Synchrotron Magnets with Cryogenic Exciting Coils1115
     G.T. Danby, J.E. Allinger, and J. W. Jackson, Brookhaven National Laboratory 
  
Summary of Sixth Week of Summer Study1127
     J.P. Blewett, Brookhaven National Laboratory 
  

 Directly Jump to    1st Week        2nd Week      3rd Week     4th Week     5th Week     6th Week

Author Index